Point3->Int3; new Float3 type
This commit is contained in:
parent
1e029903a6
commit
02d91f9d23
8 changed files with 116 additions and 44 deletions
|
@ -17,13 +17,13 @@ func init() {
|
|||
// Actor handles basic movement.
|
||||
type Actor struct {
|
||||
CollisionDomain string // id of component to look for colliders inside of
|
||||
Pos, Size Point3
|
||||
Pos, Size Int3
|
||||
xRem, yRem, zRem float64
|
||||
|
||||
game *Game
|
||||
}
|
||||
|
||||
func (a *Actor) CollidesAt(p Point3) bool {
|
||||
func (a *Actor) CollidesAt(p Int3) bool {
|
||||
bounds := Box{Min: p, Max: p.Add(a.Size)}
|
||||
for c := range a.game.Query(a.CollisionDomain, ColliderType) {
|
||||
if c.(Collider).CollidesWith(bounds) {
|
||||
|
|
|
@ -4,7 +4,7 @@ import "image"
|
|||
|
||||
// Box describes an axis-aligned rectangular prism.
|
||||
type Box struct {
|
||||
Min, Max Point3
|
||||
Min, Max Int3
|
||||
}
|
||||
|
||||
// String returns a string representation of b like "(3,4,5)-(6,5,8)".
|
||||
|
@ -32,7 +32,7 @@ func (b Box) Overlaps(c Box) bool {
|
|||
}
|
||||
|
||||
// Size returns b's width, height, and depth.
|
||||
func (b Box) Size() Point3 {
|
||||
func (b Box) Size() Int3 {
|
||||
return b.Max.Sub(b.Min)
|
||||
}
|
||||
|
||||
|
|
|
@ -35,7 +35,7 @@ type Camera struct {
|
|||
|
||||
// PointAt points the camera at a particular centre point and zoom, but adjusts
|
||||
// for the bounds of the child component (if available).
|
||||
func (c *Camera) PointAt(centre Point3, zoom float64) {
|
||||
func (c *Camera) PointAt(centre Int3, zoom float64) {
|
||||
// Special sauce: if Child has a BoundingRect, make some adjustments
|
||||
bnd, ok := c.Child.(Bounder)
|
||||
if !ok {
|
||||
|
|
|
@ -41,6 +41,7 @@ type Game struct {
|
|||
Hidden
|
||||
ScreenSize image.Point
|
||||
Root interface{} // typically a *Scene or SceneRef though
|
||||
VoxelScale Float3
|
||||
|
||||
dbmu sync.RWMutex
|
||||
byID map[string]Identifier // Named components by ID
|
||||
|
|
|
@ -6,8 +6,8 @@ import "image"
|
|||
type IntMatrix3 [3][3]int
|
||||
|
||||
// Apply applies the matrix to a vector to obtain a transformed vector.
|
||||
func (a IntMatrix3) Apply(v Point3) Point3 {
|
||||
return Point3{
|
||||
func (a IntMatrix3) Apply(v Int3) Int3 {
|
||||
return Int3{
|
||||
X: v.X*a[0][0] + v.Y*a[0][1] + v.Z*a[0][2],
|
||||
Y: v.X*a[1][0] + v.Y*a[1][1] + v.Z*a[1][2],
|
||||
Z: v.X*a[2][0] + v.Y*a[2][1] + v.Z*a[2][2],
|
||||
|
@ -40,19 +40,19 @@ func (a IntMatrix3) Concat(b IntMatrix3) IntMatrix3 {
|
|||
type IntMatrix3x4 [3][4]int
|
||||
|
||||
// Apply applies the matrix to a vector to obtain a transformed vector.
|
||||
func (a IntMatrix3x4) Apply(v Point3) Point3 {
|
||||
return Point3{
|
||||
func (a IntMatrix3x4) Apply(v Int3) Int3 {
|
||||
return Int3{
|
||||
X: v.X*a[0][0] + v.Y*a[0][1] + v.Z*a[0][2] + a[0][3],
|
||||
Y: v.X*a[1][0] + v.Y*a[1][1] + v.Z*a[1][2] + a[1][3],
|
||||
Z: v.X*a[2][0] + v.Y*a[2][1] + v.Z*a[2][2] + a[2][3],
|
||||
}
|
||||
}
|
||||
|
||||
// IntMatrix2x3 implements a 2 row, 3 column matrix (as two Point3 row vectors).
|
||||
type IntMatrix2x3 [2]Point3
|
||||
// IntMatrix2x3 implements a 2 row, 3 column matrix (as two row vectors).
|
||||
type IntMatrix2x3 [2]Int3
|
||||
|
||||
// Apply applies the matrix to a vector to obtain a transformed vector.
|
||||
func (a IntMatrix2x3) Apply(v Point3) image.Point {
|
||||
func (a IntMatrix2x3) Apply(v Int3) image.Point {
|
||||
return image.Point{
|
||||
X: v.Dot(a[0]),
|
||||
Y: v.Dot(a[1]),
|
||||
|
|
119
engine/point.go
119
engine/point.go
|
@ -1,77 +1,78 @@
|
|||
package engine
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"image"
|
||||
"strconv"
|
||||
)
|
||||
|
||||
// Point3 is a an element of int^3.
|
||||
type Point3 struct {
|
||||
// Int3 is a an element of int^3.
|
||||
type Int3 struct {
|
||||
X, Y, Z int
|
||||
}
|
||||
|
||||
// Pt3(x, y, z) is shorthand for Point3{x, y, z}.
|
||||
func Pt3(x, y, z int) Point3 {
|
||||
return Point3{x, y, z}
|
||||
// Pt3(x, y, z) is shorthand for Int3{x, y, z}.
|
||||
func Pt3(x, y, z int) Int3 {
|
||||
return Int3{x, y, z}
|
||||
}
|
||||
|
||||
// String returns a string representation of p like "(3,4,5)".
|
||||
func (p Point3) String() string {
|
||||
func (p Int3) String() string {
|
||||
return "(" + strconv.Itoa(p.X) + "," + strconv.Itoa(p.Y) + "," + strconv.Itoa(p.Z) + ")"
|
||||
}
|
||||
|
||||
// XY applies the Z-forgetting projection. (It returns just X and Y.)
|
||||
func (p Point3) XY() image.Point {
|
||||
func (p Int3) XY() image.Point {
|
||||
return image.Point{p.X, p.Y}
|
||||
}
|
||||
|
||||
// Add performs vector addition.
|
||||
func (p Point3) Add(q Point3) Point3 {
|
||||
return Point3{p.X + q.X, p.Y + q.Y, p.Z + q.Z}
|
||||
func (p Int3) Add(q Int3) Int3 {
|
||||
return Int3{p.X + q.X, p.Y + q.Y, p.Z + q.Z}
|
||||
}
|
||||
|
||||
// Sub performs vector subtraction.
|
||||
func (p Point3) Sub(q Point3) Point3 {
|
||||
func (p Int3) Sub(q Int3) Int3 {
|
||||
return p.Add(q.Neg())
|
||||
}
|
||||
|
||||
// CMul performs componentwise multiplication.
|
||||
func (p Point3) CMul(q Point3) Point3 {
|
||||
return Point3{p.X * q.X, p.Y * q.Y, p.Z * q.Z}
|
||||
func (p Int3) CMul(q Int3) Int3 {
|
||||
return Int3{p.X * q.X, p.Y * q.Y, p.Z * q.Z}
|
||||
}
|
||||
|
||||
// Mul performs scalar multiplication.
|
||||
func (p Point3) Mul(k int) Point3 {
|
||||
return Point3{p.X * k, p.Y * k, p.Z * k}
|
||||
func (p Int3) Mul(k int) Int3 {
|
||||
return Int3{p.X * k, p.Y * k, p.Z * k}
|
||||
}
|
||||
|
||||
// CDiv performs componentwise division.
|
||||
func (p Point3) CDiv(q Point3) Point3 {
|
||||
return Point3{p.X / q.X, p.Y / q.Y, p.Z / q.Z}
|
||||
func (p Int3) CDiv(q Int3) Int3 {
|
||||
return Int3{p.X / q.X, p.Y / q.Y, p.Z / q.Z}
|
||||
}
|
||||
|
||||
// Div performs scalar division by k.
|
||||
func (p Point3) Div(k int) Point3 {
|
||||
return Point3{p.X / k, p.Y / k, p.Z / k}
|
||||
func (p Int3) Div(k int) Int3 {
|
||||
return Int3{p.X / k, p.Y / k, p.Z / k}
|
||||
}
|
||||
|
||||
// Neg returns the vector pointing in the opposite direction.
|
||||
func (p Point3) Neg() Point3 {
|
||||
return Point3{-p.X, -p.Y, -p.Z}
|
||||
func (p Int3) Neg() Int3 {
|
||||
return Int3{-p.X, -p.Y, -p.Z}
|
||||
}
|
||||
|
||||
// Coord returns the components of the vector.
|
||||
func (p Point3) Coord() (x, y, z int) {
|
||||
func (p Int3) Coord() (x, y, z int) {
|
||||
return p.X, p.Y, p.Z
|
||||
}
|
||||
|
||||
// Sign returns a sign vector.
|
||||
func (p Point3) Sign() Point3 {
|
||||
return Point3{sign(p.X), sign(p.Y), sign(p.Z)}
|
||||
func (p Int3) Sign() Int3 {
|
||||
return Int3{sign(p.X), sign(p.Y), sign(p.Z)}
|
||||
}
|
||||
|
||||
// Dot returns the dot product of the two vectors.
|
||||
func (p Point3) Dot(q Point3) int {
|
||||
func (p Int3) Dot(q Int3) int {
|
||||
return p.X*q.X + p.Y*q.Y + p.Z*q.Z
|
||||
}
|
||||
|
||||
|
@ -84,3 +85,73 @@ func sign(m int) int {
|
|||
}
|
||||
return 1
|
||||
}
|
||||
|
||||
func signf(m float64) float64 {
|
||||
if m == 0 {
|
||||
return 0
|
||||
}
|
||||
if m < 0 {
|
||||
return -1
|
||||
}
|
||||
return 1
|
||||
}
|
||||
|
||||
// Float3 is an element of float64^3.
|
||||
type Float3 struct {
|
||||
X, Y, Z float64
|
||||
}
|
||||
|
||||
// String returns a string representation of p like "(3.0,4.0,5.0)".
|
||||
func (p Float3) String() string {
|
||||
return fmt.Sprintf("(%f,%f,%f)", p.X, p.Y, p.Z)
|
||||
}
|
||||
|
||||
// Add performs vector addition.
|
||||
func (p Float3) Add(q Float3) Float3 {
|
||||
return Float3{p.X + q.X, p.Y + q.Y, p.Z + q.Z}
|
||||
}
|
||||
|
||||
// Sub performs vector subtraction.
|
||||
func (p Float3) Sub(q Float3) Float3 {
|
||||
return p.Add(q.Neg())
|
||||
}
|
||||
|
||||
// CMul performs componentwise multiplication.
|
||||
func (p Float3) CMul(q Float3) Float3 {
|
||||
return Float3{p.X * q.X, p.Y * q.Y, p.Z * q.Z}
|
||||
}
|
||||
|
||||
// Mul performs scalar multiplication.
|
||||
func (p Float3) Mul(k float64) Float3 {
|
||||
return Float3{p.X * k, p.Y * k, p.Z * k}
|
||||
}
|
||||
|
||||
// CDiv performs componentwise division.
|
||||
func (p Float3) CDiv(q Float3) Float3 {
|
||||
return Float3{p.X / q.X, p.Y / q.Y, p.Z / q.Z}
|
||||
}
|
||||
|
||||
// Div performs scalar division by k.
|
||||
func (p Float3) Div(k float64) Float3 {
|
||||
return Float3{p.X / k, p.Y / k, p.Z / k}
|
||||
}
|
||||
|
||||
// Neg returns the vector pointing in the opposite direction.
|
||||
func (p Float3) Neg() Float3 {
|
||||
return Float3{-p.X, -p.Y, -p.Z}
|
||||
}
|
||||
|
||||
// Coord returns the components of the vector.
|
||||
func (p Float3) Coord() (x, y, z float64) {
|
||||
return p.X, p.Y, p.Z
|
||||
}
|
||||
|
||||
// Sign returns a sign vector.
|
||||
func (p Float3) Sign() Float3 {
|
||||
return Float3{signf(p.X), signf(p.Y), signf(p.Z)}
|
||||
}
|
||||
|
||||
// Dot returns the dot product of the two vectors.
|
||||
func (p Float3) Dot(q Float3) float64 {
|
||||
return p.X*q.X + p.Y*q.Y + p.Z*q.Z
|
||||
}
|
||||
|
|
|
@ -33,12 +33,12 @@ type PrismMap struct {
|
|||
Disabled
|
||||
Hidden
|
||||
|
||||
Map map[Point3]*Prism // pos -> prism
|
||||
Map map[Int3]*Prism // pos -> prism
|
||||
DrawOrderBias image.Point // dot with pos.XY() = bias value
|
||||
DrawOffset image.Point // offset applies to whole map
|
||||
PosToDraw IntMatrix2x3 // p.pos -> drawspace (before offset and camera and ...)
|
||||
PosToWorld IntMatrix3x4 // p.pos -> worldspace
|
||||
PrismSize Point3 // in worldspace
|
||||
PrismSize Int3 // in worldspace
|
||||
Sheet Sheet
|
||||
}
|
||||
|
||||
|
@ -65,7 +65,7 @@ func (m *PrismMap) Transform(pt Transform) (tf Transform) {
|
|||
type Prism struct {
|
||||
Cell int
|
||||
|
||||
pos Point3
|
||||
pos Int3
|
||||
pm *PrismMap
|
||||
}
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@ type IntProjection image.Point
|
|||
//
|
||||
// If π.X = 0, the x returned is p.X; similarly for π.Y and y.
|
||||
// Otherwise, x projects to x + z/π.X and y projects to y + z/π.Y.
|
||||
func (π IntProjection) Project(p Point3) image.Point {
|
||||
func (π IntProjection) Project(p Int3) image.Point {
|
||||
/*
|
||||
I'm using the π character because I'm a maths wanker.
|
||||
|
||||
|
|
Loading…
Reference in a new issue