WIP: better spline
This commit is contained in:
parent
ca90dbb301
commit
22cb55de15
3 changed files with 155 additions and 23 deletions
|
@ -26,12 +26,17 @@ func main() {
|
||||||
if err := linear.Prepare(); err != nil {
|
if err := linear.Prepare(); err != nil {
|
||||||
log.Fatalf("linear.Prepare() = %v, want nil", err)
|
log.Fatalf("linear.Prepare() = %v, want nil", err)
|
||||||
}
|
}
|
||||||
cubic := &geom.CubicSpline{Points: points}
|
cubic := &geom.CubicSpline{Points: points,
|
||||||
|
FixedPreslope: true,
|
||||||
|
FixedPostslope: false,
|
||||||
|
Preslope: -5,
|
||||||
|
//Postslope: -4,
|
||||||
|
}
|
||||||
if err := cubic.Prepare(); err != nil {
|
if err := cubic.Prepare(); err != nil {
|
||||||
log.Fatalf("cubic.Prepare() = %v, want nil", err)
|
log.Fatalf("cubic.Prepare() = %v, want nil", err)
|
||||||
}
|
}
|
||||||
// Produce interpolated points in CSV-like form.
|
// Produce interpolated points in CSV-like form.
|
||||||
for x := -8.0; x < 8.0; x += 0.125 {
|
for x := -8.0; x < 8.0; x += 0.0625 {
|
||||||
fmt.Printf("%f,%f,%f\n", x, linear.Interpolate(x), cubic.Interpolate(x))
|
fmt.Printf("%f,%f,%f\n", x, linear.Interpolate(x), cubic.Interpolate(x))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
117
geom/spline.go
117
geom/spline.go
|
@ -63,16 +63,25 @@ func (s *LinearSpline) Interpolate(x float64) float64 {
|
||||||
return s.Points[i-1].Y + (x-s.Points[i-1].X)*s.deriv[i-1]
|
return s.Points[i-1].Y + (x-s.Points[i-1].X)*s.deriv[i-1]
|
||||||
}
|
}
|
||||||
|
|
||||||
// CubicSpline implements a natural cubic spline. A cubic spline interpolates
|
// CubicSpline implements a cubic spline. A cubic spline interpolates
|
||||||
// the given Points while ensuring first and second derivatives are continuous.
|
// the given Points with cubic polynomials, ensuring first and second
|
||||||
|
// derivatives along the whole spline are continuous.
|
||||||
type CubicSpline struct {
|
type CubicSpline struct {
|
||||||
Points []Float2
|
Points []Float2
|
||||||
|
|
||||||
|
// If false, CubicSpline defines a natural cubic spline (the slopes at the
|
||||||
|
// endpoints are "free" and the moments at the ends are zero.)
|
||||||
|
// If true, Preslope (or Postslope, or both) is used to set the slope.
|
||||||
|
FixedPreslope, FixedPostslope bool
|
||||||
|
|
||||||
|
// Slope of line before and after spline, for extrapolation.
|
||||||
|
// If a natural cubic spline is being used, these are set by Prepare.
|
||||||
|
// If instead FixedPreslope or FixePostslope is true, these are read by
|
||||||
|
// Prepare to determine the moments.
|
||||||
|
Preslope, Postslope float64
|
||||||
|
|
||||||
// moments (second derivative at 1/6 scale) and intervals
|
// moments (second derivative at 1/6 scale) and intervals
|
||||||
m, h []float64
|
m, h []float64
|
||||||
|
|
||||||
// slope of line before and after spline, for extrapolation
|
|
||||||
preslope, postslope float64
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Prepare sorts the points and computes internal information.
|
// Prepare sorts the points and computes internal information.
|
||||||
|
@ -97,49 +106,117 @@ func (s *CubicSpline) Prepare() error {
|
||||||
}
|
}
|
||||||
s.h[i] = s.Points[i+1].X - s.Points[i].X
|
s.h[i] = s.Points[i+1].X - s.Points[i].X
|
||||||
}
|
}
|
||||||
// Compute moments. m[0] and m[N-1] are chosen to be 0 (natural cubic spline).
|
// Compute moments. "moments" is a term from drafting that basically means
|
||||||
// Also these "moments" aren't the true values of the second derivatives
|
// the second derivative of the function. Points are known as "knots".
|
||||||
|
//
|
||||||
|
// Let's start with the natural cubic spline case, where m[0] and m[N-1] are
|
||||||
|
// chosen to be 0. I'll skip over the derivation of the equations below, but
|
||||||
|
// it follows from putting a cubic in each interval and having each one meet
|
||||||
|
// the knots and match second derivatives with its neighbors.
|
||||||
|
//
|
||||||
|
// Note: these "moments" aren't the true values of the second derivatives
|
||||||
// at the knots - they are calculated at 1/6th scale to avoid a multiply
|
// at the knots - they are calculated at 1/6th scale to avoid a multiply
|
||||||
// and divide by 6.
|
// and divide by 6.
|
||||||
|
//
|
||||||
// Given:
|
// Given:
|
||||||
|
//
|
||||||
// ɣ(i) = 2.0 * (h[i-1] + h[i])
|
// ɣ(i) = 2.0 * (h[i-1] + h[i])
|
||||||
// b(i) = ((Points[i+1].Y-Points[i].Y)/h[i] - (Points[i].Y-Points[i-1].Y)/h[i-1])
|
// b(i) = ((Y[i+1]-Y[i])/h[i] - (Y[i]-Y[i-1])/h[i-1])
|
||||||
|
//
|
||||||
// we solve for m[i] in the equations:
|
// we solve for m[i] in the equations:
|
||||||
|
//
|
||||||
// h[i-1]*m[i-1] + ɣ(i)*m[i] + h[i]*m[i+1] = b(i)
|
// h[i-1]*m[i-1] + ɣ(i)*m[i] + h[i]*m[i+1] = b(i)
|
||||||
|
//
|
||||||
// for i = 1...N-2.
|
// for i = 1...N-2.
|
||||||
//
|
//
|
||||||
// Written as a diagonally dominant tridiagonal matrix equation:
|
// Written as a diagonally dominant tridiagonal matrix equation:
|
||||||
//
|
//
|
||||||
// [ɣ(1) h[1] 0 0 ... 0 ] [ m[1] ] [ b(1) ]
|
// [ ɣ(1) h[1] 0 0 ... 0 ] [ m[1] ] [ b(1) ]
|
||||||
// [h[1] ɣ(2) h[2] 0 ... 0 ] [ m[2] ] [ b(2) ]
|
// [ h[1] ɣ(2) h[2] 0 ... 0 ] [ m[2] ] [ b(2) ]
|
||||||
// [0 h[2] ɣ(3) h[3] ... 0 ] [ m[3] ] = [ b(3) ]
|
// [ 0 h[2] ɣ(3) h[3] ... 0 ] [ m[3] ] = [ b(3) ]
|
||||||
// [0 0 h[3] ɣ(4) ... ... ] [ ... ] [ ... ]
|
// [ 0 0 h[3] ɣ(4) ... ... ] [ ... ] [ ... ]
|
||||||
// [...................... ... h[N-3] ] [ ... ] [ ... ]
|
// [ ... ... ... ... ... h[N-3] ] [ . .. ] [ ... ]
|
||||||
// [0 0 ... 0 h[N-3] ɣ(N-2) ] [ m[N-2] ] [ b(N-2) ]
|
// [ 0 0 ... 0 h[N-3] ɣ(N-2) ] [ m[N-2] ] [ b(N-2) ]
|
||||||
//
|
//
|
||||||
// This is solvable in O(N) using simplified Gaussian elimination
|
// This is solvable in O(N) using simplified Gaussian elimination
|
||||||
// ("Thomas algorithm").
|
// ("Thomas algorithm").
|
||||||
|
//
|
||||||
|
// For the fixed end-slopes case, we also need to derive m[0] and m[N-1]
|
||||||
|
// from the given end-slopes. Given:
|
||||||
|
//
|
||||||
|
// b(0) = (Y[1] - Y[0]) / h[0] - Preslope
|
||||||
|
// b(N-1) = Postslope - (Y[N-1] - Y[N-2]) / h[N-2]
|
||||||
|
//
|
||||||
|
// We solve two additional equations for the new unknowns m[0] and m[N-1]:
|
||||||
|
//
|
||||||
|
// 2*m[0]*h[0] + m[1]*h[0] = b(0)
|
||||||
|
// m[N-2]*h[N-2] + 2*m[N-1]*h[N-2] = b(N-1).
|
||||||
|
//
|
||||||
|
// Fortunately this is still a tridiagonal:
|
||||||
|
//
|
||||||
|
// [ 2h[0] h[0] 0 0 0 ... 0 ] [ m[0] ] [ b(0) ]
|
||||||
|
// [ h[0] ɣ(1) h[1] 0 0 ... 0 ] [ m[1] ] [ b(1) ]
|
||||||
|
// [ 0 h[1] ɣ(2) h[2] 0 ... 0 ] [ m[2] ] [ b(2) ]
|
||||||
|
// [ 0 0 h[2] ɣ(3) h[3] ... ... ] [ m[3] ] = [ b(3) ]
|
||||||
|
// [ 0 0 h[3] ɣ(4) ... h[N-3] 0 ] [ ... ] [ ... ]
|
||||||
|
// [ ... ... ... ... h[N-3] ɣ(N-2) h[N-2] ] [ m[N-2] ] [ b(N-2) ]
|
||||||
|
// [ 0 0 0 ... 0 h[N-2] 2h[N-2] ] [ m[N-1] ] [ b(N-1) ].
|
||||||
|
//
|
||||||
|
// Fixing one end but leaving the other free leads to a mix of the two.
|
||||||
|
|
||||||
// Setup:
|
// Setup:
|
||||||
diag, upper, B := make([]float64, N-1), make([]float64, N-1), make([]float64, N-1)
|
diag, upper, B := make([]float64, N), make([]float64, N), make([]float64, N)
|
||||||
|
if s.FixedPreslope {
|
||||||
|
diag[0] = 2.0 * s.h[0]
|
||||||
|
upper[0] = s.h[0]
|
||||||
|
B[0] = (s.Points[1].Y-s.Points[0].Y)/s.h[0] - s.Preslope
|
||||||
|
}
|
||||||
for i := 1; i < N-1; i++ {
|
for i := 1; i < N-1; i++ {
|
||||||
diag[i] = 2.0 * (s.h[i-1] + s.h[i])
|
diag[i] = 2.0 * (s.h[i-1] + s.h[i])
|
||||||
upper[i] = s.h[i]
|
upper[i] = s.h[i]
|
||||||
B[i] = (s.Points[i+1].Y-s.Points[i].Y)/s.h[i] - (s.Points[i].Y-s.Points[i-1].Y)/s.h[i-1]
|
B[i] = (s.Points[i+1].Y-s.Points[i].Y)/s.h[i] - (s.Points[i].Y-s.Points[i-1].Y)/s.h[i-1]
|
||||||
}
|
}
|
||||||
|
if s.FixedPostslope {
|
||||||
|
diag[N-1] = 2.0 * s.h[N-2]
|
||||||
|
upper[N-1] = s.h[N-2]
|
||||||
|
B[N-1] = s.Postslope - (s.Points[N-1].Y-s.Points[N-2].Y)/s.h[N-2]
|
||||||
|
}
|
||||||
// Forward elimination:
|
// Forward elimination:
|
||||||
|
if s.FixedPreslope {
|
||||||
|
// Use row 0 to eliminate lower h[0] from row 1.
|
||||||
|
// lower[1] = h[0]; diag[0] = 2h[0]; therefore lower[1]/diag[0] = 0.5.
|
||||||
|
diag[1] -= 0.5 * upper[0]
|
||||||
|
B[1] -= 0.5 * B[0]
|
||||||
|
}
|
||||||
for i := 2; i < N-1; i++ {
|
for i := 2; i < N-1; i++ {
|
||||||
|
// Use row i-1 to eliminate lower h[i-1] from row i
|
||||||
t := s.h[i-1] / diag[i-1] // lower[i] / diag[i-1]
|
t := s.h[i-1] / diag[i-1] // lower[i] / diag[i-1]
|
||||||
diag[i] -= t * upper[i-1]
|
diag[i] -= t * upper[i-1]
|
||||||
B[i] -= t * B[i-1]
|
B[i] -= t * B[i-1]
|
||||||
}
|
}
|
||||||
|
if s.FixedPostslope {
|
||||||
|
// Use row N-2 to eliminate lower h[N-2] from row N-1.
|
||||||
|
t := s.h[N-2] / diag[N-2]
|
||||||
|
diag[N-1] -= t * upper[N-2]
|
||||||
|
B[N-1] -= t * B[N-2]
|
||||||
|
}
|
||||||
// Back substitution:
|
// Back substitution:
|
||||||
|
if s.FixedPostslope {
|
||||||
|
s.m[N-1] = B[N-1] / diag[N-1]
|
||||||
|
}
|
||||||
for i := N - 2; i > 0; i-- {
|
for i := N - 2; i > 0; i-- {
|
||||||
s.m[i] = (B[i] - s.h[i]*s.m[i+1]) / diag[i]
|
s.m[i] = (B[i] - s.h[i]*s.m[i+1]) / diag[i]
|
||||||
}
|
}
|
||||||
// Pre- and post-slope:
|
if s.FixedPreslope {
|
||||||
s.preslope = -s.m[1]*s.h[0] + (s.Points[1].Y-s.Points[0].Y)/s.h[0]
|
s.m[0] = (B[0] - s.h[0]*s.m[1]) / diag[1]
|
||||||
s.postslope = s.m[N-2]*s.h[N-2] + (s.Points[N-1].Y-s.Points[N-2].Y)/s.h[N-2]
|
}
|
||||||
|
// Derive pre- and post-slope, if not fixed:
|
||||||
|
if !s.FixedPreslope {
|
||||||
|
s.Preslope = -s.m[1]*s.h[0] + (s.Points[1].Y-s.Points[0].Y)/s.h[0]
|
||||||
|
}
|
||||||
|
if !s.FixedPostslope {
|
||||||
|
s.Postslope = s.m[N-2]*s.h[N-2] + (s.Points[N-1].Y-s.Points[N-2].Y)/s.h[N-2]
|
||||||
|
}
|
||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -153,11 +230,11 @@ func (s *CubicSpline) Interpolate(x float64) float64 {
|
||||||
}
|
}
|
||||||
if x < s.Points[0].X {
|
if x < s.Points[0].X {
|
||||||
// Comes before the start of the spline, extrapolate
|
// Comes before the start of the spline, extrapolate
|
||||||
return s.Points[0].Y + (x-s.Points[0].X)*s.preslope
|
return s.Points[0].Y + (x-s.Points[0].X)*s.Preslope
|
||||||
}
|
}
|
||||||
if x > s.Points[N-1].X {
|
if x > s.Points[N-1].X {
|
||||||
// Comes after the end of the spline, extrapolate
|
// Comes after the end of the spline, extrapolate
|
||||||
return s.Points[N-1].Y + (x-s.Points[N-1].X)*s.postslope
|
return s.Points[N-1].Y + (x-s.Points[N-1].X)*s.Postslope
|
||||||
}
|
}
|
||||||
// Somewhere in the middle
|
// Somewhere in the middle
|
||||||
i := sort.Search(N, func(n int) bool {
|
i := sort.Search(N, func(n int) bool {
|
||||||
|
|
|
@ -111,7 +111,7 @@ func TestCubicSplineOnePoint(t *testing.T) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestCubicSpline(t *testing.T) {
|
func TestNaturalCubicSpline(t *testing.T) {
|
||||||
s := &CubicSpline{
|
s := &CubicSpline{
|
||||||
Points: []Float2{{-7, -2}, {-5, 1}, {-3, 0}, {-2, -3}, {0, 2}, {1, -5}, {3, -2}, {4, 4}},
|
Points: []Float2{{-7, -2}, {-5, 1}, {-3, 0}, {-2, -3}, {0, 2}, {1, -5}, {3, -2}, {4, 4}},
|
||||||
}
|
}
|
||||||
|
@ -156,3 +156,53 @@ func TestCubicSpline(t *testing.T) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func TestFixedEndSlopesCubicSpline(t *testing.T) {
|
||||||
|
s := &CubicSpline{
|
||||||
|
Points: []Float2{{-7, -2}, {-5, 1}, {-3, 0}, {-2, -3}, {0, 2}, {1, -5}, {3, -2}, {4, 4}},
|
||||||
|
FixedPreslope: true,
|
||||||
|
FixedPostslope: true,
|
||||||
|
Preslope: -1,
|
||||||
|
Postslope: 1,
|
||||||
|
}
|
||||||
|
if err := s.Prepare(); err != nil {
|
||||||
|
t.Errorf("s.Prepare() = %v, want nil", err)
|
||||||
|
}
|
||||||
|
tests := []struct {
|
||||||
|
x, want float64
|
||||||
|
}{
|
||||||
|
{x: -8, want: -3.648342225609756},
|
||||||
|
{x: -7.5, want: -2.824171112804878},
|
||||||
|
{x: -7, want: -2},
|
||||||
|
{x: -6.5, want: -1.180464581745427},
|
||||||
|
{x: -6, want: -0.3887433307926829},
|
||||||
|
{x: -5.5, want: 0.3473495855564025},
|
||||||
|
{x: -5, want: 1},
|
||||||
|
{x: -4.5, want: 1.5067079125381098},
|
||||||
|
{x: -4, want: 1.6662299923780488},
|
||||||
|
{x: -3.5, want: 1.2426370760289636},
|
||||||
|
{x: -3, want: 0},
|
||||||
|
{x: -2.5, want: -1.9368449885670733},
|
||||||
|
{x: -2, want: -3},
|
||||||
|
{x: -1.5, want: -1.855450886051829},
|
||||||
|
{x: -1, want: 0.45221989329268286},
|
||||||
|
{x: -0.5, want: 2.2837807259908534},
|
||||||
|
{x: 0, want: 2},
|
||||||
|
{x: 0.5, want: -1.229539824695122},
|
||||||
|
{x: 1, want: -5},
|
||||||
|
{x: 1.5, want: -6.734946646341463},
|
||||||
|
{x: 2, want: -6.406821646341463},
|
||||||
|
{x: 2.5, want: -4.6252858231707314},
|
||||||
|
{x: 3, want: -2},
|
||||||
|
{x: 3.5, want: 0.941477705792683},
|
||||||
|
{x: 4, want: 4},
|
||||||
|
{x: 4.5, want: 7.078029725609756},
|
||||||
|
{x: 5, want: 10.156059451219512},
|
||||||
|
{x: 5.5, want: 13.234089176829269},
|
||||||
|
}
|
||||||
|
for _, test := range tests {
|
||||||
|
if got := s.Interpolate(test.x); math.Abs(got-test.want) > 0.0000001 {
|
||||||
|
t.Errorf("s.Interpolate(%v) = %v, want %v", test.x, got, test.want)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in a new issue