collider now collides with boxes

This commit is contained in:
Josh Deprez 2021-09-02 20:17:45 +10:00
parent 82559faa66
commit 5ac31e1e6d
10 changed files with 172 additions and 164 deletions

View file

@ -24,7 +24,7 @@ type Actor struct {
} }
func (a *Actor) CollidesAt(p Point3) bool { func (a *Actor) CollidesAt(p Point3) bool {
bounds := Box{Min: p, Max: p.Add(a.Size)}.XY() // TODO: 3D collision bounds := Box{Min: p, Max: p.Add(a.Size)}
for c := range a.game.Query(a.CollisionDomain, ColliderType) { for c := range a.game.Query(a.CollisionDomain, ColliderType) {
if c.(Collider).CollidesWith(bounds) { if c.(Collider).CollidesWith(bounds) {
return true return true

65
engine/box.go Normal file
View file

@ -0,0 +1,65 @@
package engine
import "image"
// Box describes an axis-aligned rectangular prism.
type Box struct {
Min, Max Point3
}
// String returns a string representation of b like "(3,4,5)-(6,5,8)".
func (b Box) String() string {
return b.Min.String() + "-" + b.Max.String()
}
// Empty reports whether the box contains no points.
func (b Box) Empty() bool {
return b.Min.X >= b.Max.X || b.Min.Y >= b.Max.Y || b.Min.Z >= b.Max.Z
}
// Eq reports whether b and c contain the same set of points. All empty boxes
// are considered equal.
func (b Box) Eq(c Box) bool {
return b == c || b.Empty() && c.Empty()
}
// Overlaps reports whether b and c have non-empty intersection.
func (b Box) Overlaps(c Box) bool {
return !b.Empty() && !c.Empty() &&
b.Min.X < c.Max.X && c.Min.X < b.Max.X &&
b.Min.Y < c.Max.Y && c.Min.Y < b.Max.Y &&
b.Min.Z < c.Max.Z && c.Min.Z < b.Max.Z
}
// Size returns b's width, height, and depth.
func (b Box) Size() Point3 {
return b.Max.Sub(b.Min)
}
// Back returns an image.Rectangle representing the back of the box, using
// the given projection π.
func (b Box) Back(π image.Point) image.Rectangle {
b.Max.Z = b.Min.Z
return image.Rectangle{
Min: b.Min.IsoProject(π),
Max: b.Max.IsoProject(π),
}
}
// Front returns an image.Rectangle representing the front of the box, using
// the given projection π.
func (b Box) Front(π image.Point) image.Rectangle {
b.Min.Z = b.Max.Z
return image.Rectangle{
Min: b.Min.IsoProject(π),
Max: b.Max.IsoProject(π),
}
}
// XY returns the image.Rectangle representing the box if we forgot about Z.
func (b Box) XY() image.Rectangle {
return image.Rectangle{
Min: b.Min.XY(),
Max: b.Max.XY(),
}
}

View file

@ -49,7 +49,7 @@ type Bounder interface {
// Collider components have tangible form. // Collider components have tangible form.
type Collider interface { type Collider interface {
CollidesWith(image.Rectangle) bool CollidesWith(Box) bool
} }
// Disabler components can be disabled. // Disabler components can be disabled.

View file

@ -3,7 +3,6 @@ package engine
import ( import (
"encoding/gob" "encoding/gob"
"image" "image"
"strconv"
"github.com/hajimehoshi/ebiten/v2" "github.com/hajimehoshi/ebiten/v2"
) )
@ -32,152 +31,6 @@ func init() {
gob.Register(&IsoVoxelSide{}) gob.Register(&IsoVoxelSide{})
} }
// Point3 is a an element of int^3.
type Point3 struct {
X, Y, Z int
}
// Pt3(x, y, z) is shorthand for Point3{x, y, z}.
func Pt3(x, y, z int) Point3 {
return Point3{x, y, z}
}
// String returns a string representation of p like "(3,4,5)".
func (p Point3) String() string {
return "(" + strconv.Itoa(p.X) + "," + strconv.Itoa(p.Y) + "," + strconv.Itoa(p.Z) + ")"
}
// XY applies the Z-forgetting projection. (It returns just X and Y.)
func (p Point3) XY() image.Point {
return image.Point{p.X, p.Y}
}
// Add performs vector addition.
func (p Point3) Add(q Point3) Point3 {
return Point3{p.X + q.X, p.Y + q.Y, p.Z + q.Z}
}
// Sub performs vector subtraction.
func (p Point3) Sub(q Point3) Point3 {
return p.Add(q.Neg())
}
// CMul performs componentwise multiplication.
func (p Point3) CMul(q Point3) Point3 {
return Point3{p.X * q.X, p.Y * q.Y, p.Z * q.Z}
}
// Mul performs scalar multiplication.
func (p Point3) Mul(k int) Point3 {
return Point3{p.X * k, p.Y * k, p.Z * k}
}
// CDiv performs componentwise division.
func (p Point3) CDiv(q Point3) Point3 {
return Point3{p.X / q.X, p.Y / q.Y, p.Z / q.Z}
}
// Div performs scalar division by k.
func (p Point3) Div(k int) Point3 {
return Point3{p.X / k, p.Y / k, p.Z / k}
}
// Neg returns the vector pointing in the opposite direction.
func (p Point3) Neg() Point3 {
return Point3{-p.X, -p.Y, -p.Z}
}
// Coord returns the components of the vector.
func (p Point3) Coord() (x, y, z int) {
return p.X, p.Y, p.Z
}
// IsoProject performs isometric projection of a 3D coordinate into 2D.
//
// If π.X = 0, the x returned is p.X; similarly for π.Y and y.
// Otherwise, x projects to x + z/π.X and y projects to y + z/π.Y.
func (p Point3) IsoProject(π image.Point) image.Point {
/*
I'm using the π character because I'm a maths wanker.
Dividing is used because there's little reason for an isometric
projection in a game to exaggerate the Z position.
Integers are used to preserve that "pixel perfect" calculation in case
you are making the next Celeste.
*/
q := image.Point{p.X, p.Y}
if π.X != 0 {
q.X += p.Z / π.X
}
if π.Y != 0 {
q.Y += p.Z / π.Y
}
return q
}
// Box describes an axis-aligned rectangular prism.
type Box struct {
Min, Max Point3
}
// String returns a string representation of b like "(3,4,5)-(6,5,8)".
func (b Box) String() string {
return b.Min.String() + "-" + b.Max.String()
}
// Empty reports whether the box contains no points.
func (b Box) Empty() bool {
return b.Min.X >= b.Max.X || b.Min.Y >= b.Max.Y || b.Min.Z >= b.Max.Z
}
// Eq reports whether b and c contain the same set of points. All empty boxes
// are considered equal.
func (b Box) Eq(c Box) bool {
return b == c || b.Empty() && c.Empty()
}
// Overlaps reports whether b and c have non-empty intersection.
func (b Box) Overlaps(c Box) bool {
return !b.Empty() && !c.Empty() &&
b.Min.X < c.Max.X && c.Min.X < b.Max.X &&
b.Min.Y < c.Max.Y && c.Min.Y < b.Max.Y &&
b.Min.Z < c.Max.Z && c.Min.Z < b.Max.Z
}
// Size returns b's width, height, and depth.
func (b Box) Size() Point3 {
return b.Max.Sub(b.Min)
}
// Back returns an image.Rectangle representing the back of the box, using
// the given projection π.
func (b Box) Back(π image.Point) image.Rectangle {
b.Max.Z = b.Min.Z
return image.Rectangle{
Min: b.Min.IsoProject(π),
Max: b.Max.IsoProject(π),
}
}
// Front returns an image.Rectangle representing the front of the box, using
// the given projection π.
func (b Box) Front(π image.Point) image.Rectangle {
b.Min.Z = b.Max.Z
return image.Rectangle{
Min: b.Min.IsoProject(π),
Max: b.Max.IsoProject(π),
}
}
// XY returns the image.Rectangle representing the box if we forgot about Z.
func (b Box) XY() image.Rectangle {
return image.Rectangle{
Min: b.Min.XY(),
Max: b.Max.XY(),
}
}
// IsoVoxmap implements a voxel map, painted using flat images in 2D. // IsoVoxmap implements a voxel map, painted using flat images in 2D.
type IsoVoxmap struct { type IsoVoxmap struct {
ID ID
@ -267,7 +120,8 @@ func (v *IsoVoxelSide) DrawOrder() (int, int) {
if v.front { if v.front {
z += v.vox.ivm.VoxSize.Z - 1 z += v.vox.ivm.VoxSize.Z - 1
} }
return z, dot(v.vox.pos.XY(), v.vox.ivm.DrawOrderBias) bias := dot(v.vox.pos.XY(), v.vox.ivm.DrawOrderBias)
return z, bias
} }
// Transform offsets the image by either OffsetBack or OffsetFront. // Transform offsets the image by either OffsetBack or OffsetFront.

90
engine/point.go Normal file
View file

@ -0,0 +1,90 @@
package engine
import (
"image"
"strconv"
)
// Point3 is a an element of int^3.
type Point3 struct {
X, Y, Z int
}
// Pt3(x, y, z) is shorthand for Point3{x, y, z}.
func Pt3(x, y, z int) Point3 {
return Point3{x, y, z}
}
// String returns a string representation of p like "(3,4,5)".
func (p Point3) String() string {
return "(" + strconv.Itoa(p.X) + "," + strconv.Itoa(p.Y) + "," + strconv.Itoa(p.Z) + ")"
}
// XY applies the Z-forgetting projection. (It returns just X and Y.)
func (p Point3) XY() image.Point {
return image.Point{p.X, p.Y}
}
// Add performs vector addition.
func (p Point3) Add(q Point3) Point3 {
return Point3{p.X + q.X, p.Y + q.Y, p.Z + q.Z}
}
// Sub performs vector subtraction.
func (p Point3) Sub(q Point3) Point3 {
return p.Add(q.Neg())
}
// CMul performs componentwise multiplication.
func (p Point3) CMul(q Point3) Point3 {
return Point3{p.X * q.X, p.Y * q.Y, p.Z * q.Z}
}
// Mul performs scalar multiplication.
func (p Point3) Mul(k int) Point3 {
return Point3{p.X * k, p.Y * k, p.Z * k}
}
// CDiv performs componentwise division.
func (p Point3) CDiv(q Point3) Point3 {
return Point3{p.X / q.X, p.Y / q.Y, p.Z / q.Z}
}
// Div performs scalar division by k.
func (p Point3) Div(k int) Point3 {
return Point3{p.X / k, p.Y / k, p.Z / k}
}
// Neg returns the vector pointing in the opposite direction.
func (p Point3) Neg() Point3 {
return Point3{-p.X, -p.Y, -p.Z}
}
// Coord returns the components of the vector.
func (p Point3) Coord() (x, y, z int) {
return p.X, p.Y, p.Z
}
// IsoProject performs isometric projection of a 3D coordinate into 2D.
//
// If π.X = 0, the x returned is p.X; similarly for π.Y and y.
// Otherwise, x projects to x + z/π.X and y projects to y + z/π.Y.
func (p Point3) IsoProject(π image.Point) image.Point {
/*
I'm using the π character because I'm a maths wanker.
Dividing is used because there's little reason for an isometric
projection in a game to exaggerate the Z position.
Integers are used to preserve that "pixel perfect" calculation in case
you are making the next Celeste.
*/
q := image.Point{p.X, p.Y}
if π.X != 0 {
q.X += p.Z / π.X
}
if π.Y != 0 {
q.Y += p.Z / π.Y
}
return q
}

View file

@ -2,7 +2,6 @@ package engine
import ( import (
"encoding/gob" "encoding/gob"
"image"
) )
var _ Collider = SolidRect{} var _ Collider = SolidRect{}
@ -13,9 +12,9 @@ func init() {
type SolidRect struct { type SolidRect struct {
ID ID
Bounds Box
} }
func (s SolidRect) CollidesWith(r image.Rectangle) bool { func (s SolidRect) CollidesWith(r Box) bool {
return s.BoundingRect().Overlaps(r) return s.Box.Overlaps(r)
} }

View file

@ -47,13 +47,13 @@ type Tilemap struct {
} }
// CollidesWith implements Collider. // CollidesWith implements Collider.
func (t *Tilemap) CollidesWith(r image.Rectangle) bool { func (t *Tilemap) CollidesWith(b Box) bool {
if t.Ersatz { if t.Ersatz {
return false return false
} }
// Probe the map at all tilespace coordinates overlapping the rect. // Probe the map at all tilespace coordinates overlapping the rect.
r = r.Sub(t.Offset) r := b.XY().Sub(t.Offset) // TODO: pretend tilemap is a plane in 3D?
min := cdiv(r.Min, t.Sheet.CellSize) min := cdiv(r.Min, t.Sheet.CellSize)
max := cdiv(r.Max.Sub(image.Pt(1, 1)), t.Sheet.CellSize) // NB: fencepost max := cdiv(r.Max.Sub(image.Pt(1, 1)), t.Sheet.CellSize) // NB: fencepost

View file

@ -39,13 +39,13 @@ type Wall struct {
} }
// CollidesWith implements a tilerange collosion check, similar to Tilemap. // CollidesWith implements a tilerange collosion check, similar to Tilemap.
func (w *Wall) CollidesWith(r image.Rectangle) bool { func (w *Wall) CollidesWith(b Box) bool {
if w.Ersatz { if w.Ersatz {
return false return false
} }
// Probe the map at all tilespace coordinates overlapping the rect. // Probe the map at all tilespace coordinates overlapping the rect.
r = r.Sub(w.Offset) r := b.XY().Sub(w.Offset)
min := cdiv(r.Min, w.UnitSize) min := cdiv(r.Min, w.UnitSize)
max := cdiv(r.Max.Sub(image.Pt(1, 1)), w.UnitSize) // NB: fencepost max := cdiv(r.Max.Sub(image.Pt(1, 1)), w.UnitSize) // NB: fencepost

Binary file not shown.

12
main.go
View file

@ -170,16 +170,16 @@ func writeLevel1() {
}, },
}, },
&engine.SolidRect{ &engine.SolidRect{
ID: "ceiling", ID: "ceiling",
Bounds: engine.Bounds(image.Rect(0, -1, 320, 0)), Box: engine.Box{Min: engine.Pt3(0, -1, 0), Max: engine.Pt3(320, 0, 100)},
}, },
&engine.SolidRect{ &engine.SolidRect{
ID: "left_wall", ID: "left_wall",
Bounds: engine.Bounds(image.Rect(-1, 0, 0, 240)), Box: engine.Box{Min: engine.Pt3(-1, 0, 0), Max: engine.Pt3(0, 240, 100)},
}, },
&engine.SolidRect{ &engine.SolidRect{
ID: "right_wall", ID: "right_wall",
Bounds: engine.Bounds(image.Rect(320, 0, 321, 240)), Box: engine.Box{Min: engine.Pt3(320, 0, 0), Max: engine.Pt3(321, 240, 100)},
}, },
&game.Awakeman{ &game.Awakeman{
CameraID: "game_camera", CameraID: "game_camera",