WIP: oh god oh fuck

This commit is contained in:
Josh Deprez 2021-09-20 12:18:03 +10:00
parent 169b7f343c
commit 89febffcea
8 changed files with 202 additions and 320 deletions

View file

@ -40,19 +40,6 @@ func (d *DebugToast) Draw(screen *ebiten.Image, _ *ebiten.DrawImageOptions) {
ebitenutil.DebugPrintAt(screen, d.Text, d.Pos.X, d.Pos.Y)
}
// Draw last.
func (DebugToast) DrawAfter(x Drawer) bool {
switch x.(type) {
case *DebugToast, PerfDisplay:
return false
}
return true
}
func (DebugToast) DrawBefore(x Drawer) bool {
return false
}
func (d *DebugToast) String() string {
return fmt.Sprintf("DebugToast@%v", d.Pos)
}
@ -79,17 +66,4 @@ func (p PerfDisplay) Draw(screen *ebiten.Image, _ *ebiten.DrawImageOptions) {
ebitenutil.DebugPrint(screen, fmt.Sprintf("TPS: %0.2f FPS: %0.2f", ebiten.CurrentTPS(), ebiten.CurrentFPS()))
}
// Draw last.
func (PerfDisplay) DrawAfter(x Drawer) bool {
switch x.(type) {
case *DebugToast, PerfDisplay:
return false
}
return true
}
func (PerfDisplay) DrawBefore(Drawer) bool {
return false
}
func (PerfDisplay) String() string { return "PerfDisplay" }

View file

@ -7,29 +7,27 @@ import (
"github.com/hajimehoshi/ebiten/v2"
)
// drawDAG combines a DAG with a spatial index used when adding new vertices
// DrawDAG is a DrawLayer that organises DrawBoxer descendants in a directed
// acyclic graph (DAG), in order to draw them according to ordering constraints.
// It combines a DAG with a spatial index used when adding new vertices
// in order to reduce the number of tests between components.
type drawDAG struct {
type DrawDAG struct {
ChunkSize int
Components []interface{}
Hides
*dag
chunks map[image.Point]drawerSet
chunksRev map[DrawBoxer]image.Rectangle
chunkSize int
chunks map[image.Point]drawerSet // chunk coord -> drawers with bounding rects intersecting chunk
chunksRev map[DrawBoxer]image.Rectangle // comopnent -> rectangle of chunk coords
parent func(x interface{}) interface{}
proj geom.Projector
}
func newDrawDAG(game *Game, chunkSize int, π geom.Projector) *drawDAG {
return &drawDAG{
dag: newDAG(),
chunks: make(map[image.Point]drawerSet), // chunk coord -> drawers with bounding rects intersecting chunk
chunksRev: make(map[DrawBoxer]image.Rectangle), // comopnent -> rectangle of chunk coords
chunkSize: chunkSize,
parent: game.Parent,
proj: π,
// Draw draws everything in the DAG in topological order.
func (d *DrawDAG) DrawAll(screen *ebiten.Image, opts *ebiten.DrawImageOptions) {
if d.Hidden() {
return
}
}
func (d *drawDAG) Draw(screen *ebiten.Image) {
// Hiding a parent component should hide the child objects, and the
// transform applied to a child should be the cumulative transform of all
// parents as well.
@ -38,18 +36,23 @@ func (d *drawDAG) Draw(screen *ebiten.Image) {
hidden bool
opts ebiten.DrawImageOptions
}
cache := make(map[interface{}]state)
// Draw everything in g.drawList, where not hidden (itself or any parent)
cache := map[interface{}]state{
d: {
hidden: false,
opts: *opts,
},
}
// Draw everything in d.dag, where not hidden (itself or any parent)
d.dag.topIterate(func(x Drawer) {
// Is d hidden itself?
if h, ok := x.(Hider); ok && h.Hidden() {
cache[x] = state{hidden: true}
return // skip drawing
}
// Walk up g.par to find the nearest state in accum.
// Walk up game tree to find the nearest state in cache.
var st state
stack := []interface{}{x}
for p := d.parent(x); p != nil; p = d.parent(p) {
for p := d.parent(x); ; p = d.parent(p) {
if s, found := cache[p]; found {
st = s
break
@ -83,27 +86,45 @@ func (d *drawDAG) Draw(screen *ebiten.Image) {
})
}
type DrawBoxer interface {
Drawer
BoundingBoxer
func (d *DrawDAG) Prepare(game *Game) error {
d.dag = newDAG()
d.chunks = make(map[image.Point]drawerSet)
d.chunksRev = make(map[DrawBoxer]image.Rectangle)
d.parent = game.Parent
d.proj = game.Projection
// Load all descendants into the DAG
return PreorderWalk(d, func(c, _ interface{}) error {
if db, ok := c.(DrawBoxer); ok {
d.Add(db)
}
return nil
})
}
// add adds a Drawer and any needed edges to the DAG and chunk map.
func (d *drawDAG) add(x DrawBoxer) {
func (d *DrawDAG) Scan() []interface{} { return d.Components }
// Add adds a Drawer and any needed edges to the DAG and chunk map.
func (d *DrawDAG) Add(x DrawBoxer) {
πsign := d.proj.Sign()
br := x.BoundingBox().BoundingRect(d.proj)
// Update the reverse chunk map
revr := image.Rectangle{
Min: br.Min.Div(d.chunkSize),
Max: br.Max.Sub(image.Pt(1, 1)).Div(d.chunkSize),
Min: br.Min.Div(d.ChunkSize),
Max: br.Max.Sub(image.Pt(1, 1)).Div(d.ChunkSize),
}
d.chunksRev[x] = revr
// Find possible edges between x and items in the overlapping cells.
// First, a set of all the items in those cells.
cand := make(drawerSet)
for j := revr.Min.Y; j <= revr.Max.Y; j++ {
for i := revr.Min.X; i <= revr.Max.X; i++ {
cell := d.chunks[image.Pt(i, j)]
var p image.Point
for p.Y = revr.Min.Y; p.Y <= revr.Max.Y; p.Y++ {
for p.X = revr.Min.X; p.X <= revr.Max.X; p.X++ {
cell := d.chunks[p]
if cell == nil {
cell = make(drawerSet)
d.chunks[p] = cell
}
// Merge cell contents into cand
for c := range cell {
cand[c] = struct{}{}
@ -115,21 +136,22 @@ func (d *drawDAG) add(x DrawBoxer) {
// Add edges between x and elements of cand
for c := range cand {
y := c.(DrawBoxer)
// Bounding rectangle test
// Bounding rectangle overlap test
// No overlap, no edge.
if ybr := y.BoundingBox().BoundingRect(d.proj); !br.Overlaps(ybr) {
continue
}
switch {
case edge(y, x, πsign):
case drawOrderConstraint(y, x, πsign):
d.dag.addEdge(y, x)
case edge(x, y, πsign):
case drawOrderConstraint(x, y, πsign):
d.dag.addEdge(x, y)
}
}
}
// remove removes a Drawer and all associated edges and metadata.
func (d *drawDAG) remove(x DrawBoxer) {
// Remove removes a Drawer and all associated edges and metadata.
func (d *DrawDAG) Remove(x DrawBoxer) {
// Remove from chunk map
revr := d.chunksRev[x]
for j := revr.Min.Y; j <= revr.Max.Y; j++ {
@ -143,6 +165,47 @@ func (d *drawDAG) remove(x DrawBoxer) {
d.dag.removeVertex(x)
}
// drawOrderConstraint reports if there is a draw ordering constraint between u
// and v (where u must draw before v).
func drawOrderConstraint(u, v DrawBoxer, πsign image.Point) bool {
// Common logic for known interfaces (BoundingBoxer, ZPositioner), to
// simplify DrawOrderer implementations.
ub, vb := u.BoundingBox(), v.BoundingBox()
if ub.Min.Z >= vb.Max.Z { // u is in front of v
return false
}
if ub.Max.Z <= vb.Min.Z { // u is behind v
return true
}
if πsign.X != 0 {
if ub.Max.X*πsign.X <= vb.Min.X*πsign.X { // u is to the left of v
return false
}
if ub.Min.X*πsign.X >= vb.Max.X*πsign.X { // u is to the right of v
return true
}
}
if πsign.Y != 0 {
if ub.Max.Y*πsign.Y <= vb.Min.Y*πsign.Y { // u is above v
return false
}
if ub.Min.Y*πsign.Y >= vb.Max.Y*πsign.Y { // u is below v
return true
}
}
// Ask the components themselves if they have an opinion
if do, ok := u.(DrawOrderer); ok && do.DrawBefore(v) {
return true
}
if do, ok := v.(DrawOrderer); ok && do.DrawAfter(u) {
return true
}
// No relation
return false
}
type drawerSet map[Drawer]struct{}
type dag struct {

50
engine/drawdfs.go Normal file
View file

@ -0,0 +1,50 @@
package engine
import "github.com/hajimehoshi/ebiten/v2"
// DrawDFS is a DrawLayer that does not add any structure. Components are
// drawn in the order in which they are encountered by a depth-first search
// through the game tree, without any extra sorting based on Z values or
// consideration for DrawOrderer).
type DrawDFS struct {
Components []interface{}
Hides
}
func (d *DrawDFS) DrawAll(screen *ebiten.Image, opts *ebiten.DrawImageOptions) {
if d.Hidden() {
return
}
for _, component := range d.Components {
d.draw(component, screen, *opts)
}
}
func (d *DrawDFS) Scan() []interface{} { return d.Components }
func (d *DrawDFS) draw(component interface{}, screen *ebiten.Image, opts ebiten.DrawImageOptions) {
// Hidden? stop drawing
if h, ok := component.(Hider); ok && h.Hidden() {
return
}
// Has a transform? apply to opts
if tf, ok := component.(Transformer); ok {
opts = concatOpts(tf.Transform(), opts)
}
// Is it a DrawLayer? draw all and return
if dl, ok := component.(DrawLayer); ok {
dl.DrawAll(screen, &opts)
return
}
// Not a draw layer.
// Does it draw itself? Draw
if dr, ok := component.(Drawer); ok {
dr.Draw(screen, &opts)
}
// Has subcomponents? recurse
if sc, ok := component.(Scanner); ok {
for _, ch := range sc.Scan() {
d.draw(ch, screen, opts)
}
}
}

View file

@ -1,152 +0,0 @@
package engine
import (
"image"
"drjosh.dev/gurgle/geom"
"github.com/hajimehoshi/ebiten/v2"
)
var _ Drawer = tombstone{}
type tombstone struct{}
func (tombstone) Draw(*ebiten.Image, *ebiten.DrawImageOptions) {}
func (tombstone) DrawAfter(x Drawer) bool { return x != tombstone{} }
func (tombstone) DrawBefore(Drawer) bool { return false }
func (tombstone) String() string { return "tombstone" }
type drawList struct {
list []Drawer
rev map[Drawer]int
}
// edge reports if there is a draw ordering constraint between u and v (where
// u draws before v).
func edge(u, v Drawer, πsign image.Point) bool {
// Common logic for known interfaces (BoundingBoxer, ZPositioner), to
// simplify DrawOrderer implementations.
switch u := u.(type) {
case BoundingBoxer:
ub := u.BoundingBox()
switch v := v.(type) {
case BoundingBoxer:
vb := v.BoundingBox()
if ub.Min.Z >= vb.Max.Z { // u is in front of v
return false
}
if ub.Max.Z <= vb.Min.Z { // u is behind v
return true
}
if πsign.X != 0 {
if ub.Max.X*πsign.X <= vb.Min.X*πsign.X { // u is to the left of v
return false
}
if ub.Min.X*πsign.X >= vb.Max.X*πsign.X { // u is to the right of v
return true
}
}
if πsign.Y != 0 {
if ub.Max.Y*πsign.Y <= vb.Min.Y*πsign.Y { // u is above v
return false
}
if ub.Min.Y*πsign.Y >= vb.Max.Y*πsign.Y { // u is below v
return true
}
}
case ZPositioner:
return ub.Max.Z < v.ZPos() // u is before v
}
case ZPositioner:
switch y := v.(type) {
case BoundingBoxer:
return u.ZPos() < y.BoundingBox().Min.Z
case ZPositioner:
return u.ZPos() < y.ZPos()
}
}
// Fallback case: ask the components themselves if they have an opinion
if do, ok := u.(DrawOrderer); ok && do.DrawBefore(v) {
return true
}
if do, ok := v.(DrawOrderer); ok && do.DrawAfter(u) {
return true
}
// No relation
return false
}
// Topological sort. Uses a projection π to flatten bounding boxes for
// overlap tests, in order to reduce edge count.
func (d *drawList) topsort(π geom.Projector) {
// Produce edge lists and count indegrees - O(|V|^2)
// TODO: optimise this
edges := make([][]int, len(d.list))
indegree := make([]int, len(d.list))
for i, u := range d.list {
if u == (tombstone{}) {
// Prevents processing this vertex later on
indegree[i] = -1
continue
}
// If we can't get a more specific bounding rect, assume entire plane.
var ubr image.Rectangle
ub, brCheck := u.(BoundingBoxer)
if brCheck {
ubr = ub.BoundingBox().BoundingRect(π)
}
// For each possible neighbor...
for j, v := range d.list {
if i == j || v == (tombstone{}) {
continue
}
// Does it have a bounding rect? Do overlap test.
if brCheck {
if vb, ok := v.(BoundingBoxer); ok {
if vbr := vb.BoundingBox().BoundingRect(π); !ubr.Overlaps(vbr) {
continue
}
}
}
// If the edge goes u->v, add it.
if edge(u, v, π.Sign()) {
edges[i] = append(edges[i], j)
indegree[j]++
}
}
}
// Initialise queue with all the zero-indegree vertices
queue := make([]int, 0, len(d.list))
for i, n := range indegree {
if n == 0 {
queue = append(queue, i)
}
}
// Process into new list. O(|V| + |E|)
list := make([]Drawer, 0, len(d.list))
for len(queue) > 0 {
// Get front of queue.
i := queue[0]
queue = queue[1:]
// Add to output list.
d.rev[d.list[i]] = len(list)
list = append(list, d.list[i])
// Reduce indegree for all outgoing edges, enqueue if indegree now 0.
for _, j := range edges[i] {
indegree[j]--
if indegree[j] == 0 {
queue = append(queue, j)
}
}
}
// Job done!
d.list = list
}

View file

@ -13,11 +13,8 @@ import (
"drjosh.dev/gurgle/geom"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
)
const showDrawListSize = false
var _ interface {
Disabler
Hider
@ -42,15 +39,14 @@ type Game struct {
Disables
Hides
ScreenSize image.Point
Root interface{} // typically a *Scene or SceneRef though
Roots []DrawLayer
Projection geom.Projector
VoxelScale geom.Float3
dbmu sync.RWMutex
byID map[string]Identifier // Named components by ID
byAB map[abKey]map[interface{}]struct{} // Ancestor/behaviour index
drawList drawList // draw list :|
par map[interface{}]interface{} // par[x] is parent of x
dbmu sync.RWMutex
byID map[string]Identifier // Named components by ID
byAB map[abKey]map[interface{}]struct{} // Ancestor/behaviour index
par map[interface{}]interface{} // par[x] is parent of x
}
// Draw draws everything.
@ -59,64 +55,10 @@ func (g *Game) Draw(screen *ebiten.Image) {
return
}
// Hiding a parent component should hide the child objects, and the
// transform applied to a child should be the cumulative transform of all
// parents as well.
// cache memoises the results for each component.
type state struct {
hidden bool
opts ebiten.DrawImageOptions
}
cache := map[interface{}]state{
g: {hidden: false},
}
// Draw everything in g.drawList, where not hidden (itself or any parent)
for _, d := range g.drawList.list {
// Is d hidden itself?
if h, ok := d.(Hider); ok && h.Hidden() {
cache[d] = state{hidden: true}
continue // skip drawing
}
// Walk up g.par to find the nearest state in accum.
var st state
stack := []interface{}{d}
for p := g.par[d]; ; p = g.par[p] {
if s, found := cache[p]; found {
st = s
break
}
stack = append(stack, p)
}
// Unwind the stack, accumulating state along the way.
for len(stack) > 0 {
l1 := len(stack) - 1
p := stack[l1]
stack = stack[:l1]
if h, ok := p.(Hider); ok {
st.hidden = st.hidden || h.Hidden()
}
if st.hidden {
cache[p] = state{hidden: true}
continue
}
// p is not hidden, so compute its cumulative opts.
if tf, ok := p.(Transformer); ok {
st.opts = concatOpts(tf.Transform(), st.opts)
}
cache[p] = st
}
// Skip drawing if hidden.
if st.hidden {
continue
}
d.Draw(screen, &st.opts)
}
if showDrawListSize {
// Infodump about draw list
ebitenutil.DebugPrintAt(screen, fmt.Sprintf("len(drawList.list) = %d", len(g.drawList.list)), 0, 30)
ebitenutil.DebugPrintAt(screen, fmt.Sprintf("len(drawList.rev) = %d", len(g.drawList.list)), 0, 45)
// Make all draw managers draw, in order.
opts := &ebiten.DrawImageOptions{}
for _, dm := range g.Roots {
dm.DrawAll(screen, opts)
}
}
@ -184,7 +126,7 @@ func (g *Game) Update() error {
}
// Sort the draw list (on every frame - this isn't as bad as it sounds)
g.drawList.topsort(g.Projection)
//g.drawList.topsort(g.Projection)
return nil
}
@ -219,7 +161,13 @@ func (g *Game) Query(ancestorID string, behaviour reflect.Type) map[interface{}]
}
// Scan implements Scanner.
func (g *Game) Scan() []interface{} { return []interface{}{g.Root} }
func (g *Game) Scan() []interface{} {
rs := make([]interface{}, 0, len(g.Roots))
for _, r := range g.Roots {
rs = append(rs, r)
}
return rs
}
// PreorderWalk calls visit with every component and its parent, reachable from
// the given component via Scan, for as long as visit returns nil. The parent
@ -290,8 +238,6 @@ func (g *Game) LoadAndPrepare(assets fs.FS) error {
g.dbmu.Lock()
g.byID = make(map[string]Identifier)
g.byAB = make(map[abKey]map[interface{}]struct{})
g.drawList.list = nil
g.drawList.rev = make(map[Drawer]int)
g.par = make(map[interface{}]interface{})
if err := PreorderWalk(g, g.register); err != nil {
return err
@ -344,16 +290,6 @@ func (g *Game) register(component, parent interface{}) error {
g.par[component] = parent
}
// register in g.drawList
if d, ok := component.(Drawer); ok {
if _, exists := g.drawList.rev[d]; exists {
// already registered
return fmt.Errorf("double registration of %v", d)
}
g.drawList.rev[d] = len(g.drawList.list)
g.drawList.list = append(g.drawList.list, d)
}
// register in g.byAB
ct := reflect.TypeOf(component)
for _, b := range Behaviours {
@ -414,14 +350,6 @@ func (g *Game) unregister(component interface{}) {
// unregister from g.par
delete(g.par, component)
// unregister from g.drawList
if d, ok := component.(Drawer); ok {
if i, found := g.drawList.rev[d]; found {
g.drawList.list[i] = tombstone{}
delete(g.drawList.rev, d)
}
}
// unregister from g.byID if needed
if id, ok := component.(Identifier); ok && id.Ident() != "" {
delete(g.byID, id.Ident())

View file

@ -67,13 +67,27 @@ type Disabler interface {
Enable()
}
// Drawer components can draw themselves. Draw is called often. Each component
// must call Draw on any internal components not known to the engine (i.e. not
// passed to Game.Register or returned from Scan).
// DrawLayer is a component responsible for calling Draw on all Drawer
// components beneath it, except those beneath another DrawLayer (it calls
// DrawAll on those).
type DrawLayer interface {
DrawAll(*ebiten.Image, *ebiten.DrawImageOptions)
}
// Drawer components can draw themselves. Draw is called often. Draw is not
// requierd to call Draw on subcomponents, if they are known to the engine
// (as part of a DrawManager).
type Drawer interface {
Draw(*ebiten.Image, *ebiten.DrawImageOptions)
}
// DrawBoxer components can both draw and have a bounding box (used for draw
// ordering).
type DrawBoxer interface {
BoundingBoxer
Drawer
}
// DrawOrderer components have more specific ideas about draw ordering than
// merely "my Z is bigger than yours".
type DrawOrderer interface {

View file

@ -2,7 +2,6 @@ package game
import (
"image"
"image/color"
"drjosh.dev/gurgle/engine"
"drjosh.dev/gurgle/geom"
@ -14,11 +13,6 @@ func Level1() *engine.Scene {
ID: "level_1",
Bounds: engine.Bounds(image.Rect(-32, -32, 320+32, 240+32)),
Components: []interface{}{
&engine.Fill{
ID: "bg_fill",
Color: color.Gray{100},
ZPosition: -1000,
},
&engine.Parallax{
CameraID: "game_camera",
Child: &engine.Billboard{

29
main.go
View file

@ -2,6 +2,7 @@ package main
import (
"image"
"image/color"
_ "image/png"
"log"
"math"
@ -61,20 +62,30 @@ func main() {
Y: 1,
},
VoxelScale: geom.Float3{
// Each voxel counts for this much Eucliden space.
// Each voxel counts for this much (Euclidean) space.
X: 1,
Y: 1,
Z: math.Sqrt(3),
},
Root: &engine.Scene{
ID: "root",
Components: []interface{}{
&engine.Camera{
ID: "game_camera",
Child: lev1,
Roots: []engine.DrawLayer{
&engine.DrawDFS{
Components: []interface{}{
&engine.Fill{
ID: "bg_fill",
Color: color.Gray{100},
},
&engine.DrawDAG{
ChunkSize: 16,
Components: []interface{}{
&engine.Camera{
ID: "game_camera",
Child: lev1,
},
},
},
&engine.DebugToast{ID: "toast", Pos: image.Pt(0, 15)},
engine.PerfDisplay{},
},
&engine.DebugToast{ID: "toast", Pos: image.Pt(0, 15)},
engine.PerfDisplay{},
},
},
}