handle different projections

This commit is contained in:
Josh Deprez 2021-09-17 16:47:18 +10:00
parent f5219da56f
commit e4c15fcd5d
5 changed files with 48 additions and 25 deletions

View file

@ -26,37 +26,47 @@ type drawList struct {
// edge reports if there is a draw ordering constraint between u and v (where
// u draws before v).
func edge(u, v Drawer) bool {
func edge(u, v Drawer, πsign image.Point) bool {
// Common logic for known interfaces (BoundingBoxer, ZPositioner), to
// simplify DrawOrderer implementations.
switch x := u.(type) {
switch u := u.(type) {
case BoundingBoxer:
xb := x.BoundingBox()
switch y := v.(type) {
ub := u.BoundingBox()
switch v := v.(type) {
case BoundingBoxer:
yb := y.BoundingBox()
if xb.Min.Z >= yb.Max.Z { // x is in front of y
vb := v.BoundingBox()
if ub.Min.Z >= vb.Max.Z { // u is in front of v
return false
}
if xb.Max.Z <= yb.Min.Z { // x is behind y
if ub.Max.Z <= vb.Min.Z { // u is behind v
return true
}
if xb.Max.Y <= yb.Min.Y { // x is above y
return false
if πsign.X != 0 {
if ub.Max.X*πsign.X <= vb.Min.X*πsign.X { // u is to the left of v
return false
}
if ub.Min.X*πsign.X >= vb.Max.X*πsign.X { // u is to the right of v
return true
}
}
if xb.Min.Y >= yb.Max.Y { // x is below y
return true
if πsign.Y != 0 {
if ub.Max.Y*πsign.Y <= vb.Min.Y*πsign.Y { // u is above v
return false
}
if ub.Min.Y*πsign.Y >= vb.Max.Y*πsign.Y { // u is below v
return true
}
}
case ZPositioner:
return xb.Max.Z < y.ZPos() // x is before y
return ub.Max.Z < v.ZPos() // u is before v
}
case ZPositioner:
switch y := v.(type) {
case BoundingBoxer:
return x.ZPos() < y.BoundingBox().Min.Z
return u.ZPos() < y.BoundingBox().Min.Z
case ZPositioner:
return x.ZPos() < y.ZPos()
return u.ZPos() < y.ZPos()
}
}
@ -72,6 +82,8 @@ func edge(u, v Drawer) bool {
return false
}
var wholePlane = image.Rect(math.MinInt, math.MinInt, math.MaxInt, math.MaxInt)
// Topological sort. Uses a projection π to flatten bounding boxes for
// overlap tests, in order to reduce edge count.
func (d *drawList) topsort(π geom.Projector) {
@ -86,7 +98,7 @@ func (d *drawList) topsort(π geom.Projector) {
continue
}
// If we can't get a more specific bounding rect, assume entire plane.
ub := image.Rect(math.MinInt, math.MinInt, math.MaxInt, math.MaxInt)
ub := wholePlane
if x, ok := u.(BoundingBoxer); ok {
ub = x.BoundingBox().BoundingRect(π)
}
@ -103,7 +115,7 @@ func (d *drawList) topsort(π geom.Projector) {
}
// If the edge goes u->v, add it.
if edge(u, v) {
if edge(u, v, π.Sign()) {
edges[i] = append(edges[i], j)
indegree[j]++
}

View file

@ -43,7 +43,7 @@ type Game struct {
Hides
ScreenSize image.Point
Root interface{} // typically a *Scene or SceneRef though
Projection geom.IntProjection
Projection geom.Projector
VoxelScale geom.Float3
dbmu sync.RWMutex

View file

@ -196,15 +196,15 @@ func (aw *Awakeman) realUpdate() error {
// Left, right, away, toward
aw.vel.X, aw.vel.Z = 0, 0
switch {
case ebiten.IsKeyPressed(ebiten.KeyLeft):
case ebiten.IsKeyPressed(ebiten.KeyLeft) || ebiten.IsKeyPressed(ebiten.KeyJ):
aw.vel.X = -runVelocity
case ebiten.IsKeyPressed(ebiten.KeyRight):
case ebiten.IsKeyPressed(ebiten.KeyRight) || ebiten.IsKeyPressed(ebiten.KeyL):
aw.vel.X = runVelocity
}
switch {
case ebiten.IsKeyPressed(ebiten.KeyUp):
case ebiten.IsKeyPressed(ebiten.KeyUp) || ebiten.IsKeyPressed(ebiten.KeyI):
aw.vel.Z = -runVelocity
case ebiten.IsKeyPressed(ebiten.KeyDown):
case ebiten.IsKeyPressed(ebiten.KeyDown) || ebiten.IsKeyPressed(ebiten.KeyK):
aw.vel.Z = runVelocity
}

View file

@ -71,10 +71,6 @@ func (b Box) Canon() Box {
return b
}
type Projector interface {
Project(Int3) image.Point
}
// BoundingRect returns an image.Rectangle that bounds the box if it were
// projected.
func (b Box) BoundingRect(π Projector) image.Rectangle {

View file

@ -2,9 +2,22 @@ package geom
import "image"
// Projector is used by Box and others to accept arbitrary
type Projector interface {
// Sign returns a {-1, 0, 1}-valued 2D vector pointing in the direction that
// positive Z values are projected to.
Sign() image.Point
// Project projects a 3D point into 2D.
Project(Int3) image.Point
}
// Projection uses floats to define a projection.
type Projection struct{ X, Y float64 }
func (π Projection) Sign() (s image.Point) {
return image.Pt(int(FSign(π.X)), int(FSign(π.Y)))
}
// Project performs a parallel projection of a 3D coordiante into 2D.
// x projects to (x + z*π.X), and y to (y + z*π.Y)
func (π Projection) Project(p Int3) image.Point {
@ -19,6 +32,8 @@ func (π Projection) Project(p Int3) image.Point {
// be used in e.g. a diametric projection (IntProjection{X:0, Y:-2}).
type IntProjection image.Point
func (π IntProjection) Sign() image.Point { return image.Point(π) }
// Project performs an integer parallel projection of a 3D coordinate into 2D.
// If π.X = 0, the x returned is p.X; similarly for π.Y and y.
// Otherwise, x projects to x + z/π.X and y projects to y + z/π.Y.