package geom import ( "errors" "image" ) // IntMatrix3 implements a 3x3 integer matrix. type IntMatrix3 [3][3]int // Apply applies the matrix to a vector to obtain a transformed vector. func (a IntMatrix3) Apply(v Int3) Int3 { return Int3{ X: v.X*a[0][0] + v.Y*a[0][1] + v.Z*a[0][2], Y: v.X*a[1][0] + v.Y*a[1][1] + v.Z*a[1][2], Z: v.X*a[2][0] + v.Y*a[2][1] + v.Z*a[2][2], } } // Concat returns the matrix equivalent to applying matrix a and then b. func (a IntMatrix3) Concat(b IntMatrix3) IntMatrix3 { return IntMatrix3{ [3]int{ a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0], a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1], a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2], }, [3]int{ a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0], a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1], a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2], }, [3]int{ a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0], a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1], a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2], }, } } // IntMatrix3x4 implements a 3 row, 4 column integer matrix, capable of // describing any integer affine transformation. type IntMatrix3x4 [3][4]int // Apply applies the matrix to a vector to obtain a transformed vector. func (a IntMatrix3x4) Apply(v Int3) Int3 { return Int3{ X: v.X*a[0][0] + v.Y*a[0][1] + v.Z*a[0][2] + a[0][3], Y: v.X*a[1][0] + v.Y*a[1][1] + v.Z*a[1][2] + a[1][3], Z: v.X*a[2][0] + v.Y*a[2][1] + v.Z*a[2][2] + a[2][3], } } // ToRatMatrix3 returns the 3x3 submatrix as a rational matrix equivalent. func (a IntMatrix3x4) ToRatMatrix3() RatMatrix3 { return RatMatrix3{ 0: [3]Rat{{a[0][0], 1}, {a[0][1], 1}, {a[0][2], 1}}, 1: [3]Rat{{a[1][0], 1}, {a[1][1], 1}, {a[1][2], 1}}, 2: [3]Rat{{a[2][0], 1}, {a[2][1], 1}, {a[2][2], 1}}, } } // Translation returns the translation component of the matrix (last column) // i.e. what you get if you Apply the matrix to the zero vector. func (a IntMatrix3x4) Translation() Int3 { return Int3{X: a[0][3], Y: a[1][3], Z: a[2][3]} } // IntMatrix2x3 implements a 2 row, 3 column matrix (as two row vectors). type IntMatrix2x3 struct{ X, Y Int3 } // Apply applies the matrix to a vector to obtain a transformed vector. func (a IntMatrix2x3) Apply(v Int3) image.Point { return image.Point{ X: v.Dot(a.X), Y: v.Dot(a.Y), } } // RatMatrix3 implements a 3x3 matrix with rational number entries. type RatMatrix3 [3][3]Rat // IdentityRatMatrix3x4 is the identity matrix for RatMatrix3x4. var IdentityRatMatrix3 = RatMatrix3{ 0: [3]Rat{0: {1, 1}}, 1: [3]Rat{1: {1, 1}}, 2: [3]Rat{2: {1, 1}}, } // IntApply applies the matrix to the integer vector v. Any remainder is lost. func (a RatMatrix3) IntApply(v Int3) Int3 { x, y, z := IntRat(v.X), IntRat(v.Y), IntRat(v.Z) return Int3{ X: x.Mul(a[0][0]).Add(y.Mul(a[0][1])).Add(z.Mul(a[0][2])).Int(), Y: x.Mul(a[1][0]).Add(y.Mul(a[1][1])).Add(z.Mul(a[1][2])).Int(), Z: x.Mul(a[2][0]).Add(y.Mul(a[2][1])).Add(z.Mul(a[2][2])).Int(), } } // Mul multiplies the whole matrix by a scalar. func (a RatMatrix3) Mul(r Rat) RatMatrix3 { // "A little repetition..." a[0][0] = a[0][0].Mul(r) a[0][1] = a[0][1].Mul(r) a[0][2] = a[0][2].Mul(r) a[1][0] = a[1][0].Mul(r) a[1][1] = a[1][1].Mul(r) a[1][2] = a[1][2].Mul(r) a[2][0] = a[2][0].Mul(r) a[2][1] = a[2][1].Mul(r) a[2][2] = a[2][2].Mul(r) return a } // Adjugate returns the adjugate of the matrix. func (a RatMatrix3) Adjugate() RatMatrix3 { return RatMatrix3{ 0: [3]Rat{ 0: a[1][1].Mul(a[2][2]).Sub(a[1][2].Mul(a[2][1])), 1: a[0][2].Mul(a[2][1]).Sub(a[0][1].Mul(a[2][2])), 2: a[0][1].Mul(a[1][2]).Sub(a[0][2].Mul(a[1][1])), }, 1: [3]Rat{ 0: a[1][2].Mul(a[2][0]).Sub(a[1][0].Mul(a[2][2])), 1: a[0][0].Mul(a[2][2]).Sub(a[0][2].Mul(a[2][0])), 2: a[0][2].Mul(a[1][0]).Sub(a[0][0].Mul(a[1][2])), }, 2: [3]Rat{ 0: a[1][0].Mul(a[2][1]).Sub(a[1][1].Mul(a[2][0])), 1: a[0][1].Mul(a[2][0]).Sub(a[0][0].Mul(a[2][1])), 2: a[0][0].Mul(a[1][1]).Sub(a[0][1].Mul(a[1][0])), }, } } // Inverse returns the inverse of the matrix. func (a RatMatrix3) Inverse() (RatMatrix3, error) { adj := a.Adjugate() det := a[0][0].Mul(adj[0][0]).Add(a[0][1].Mul(adj[1][0])).Add(a[0][2].Mul(adj[2][0])) if det.N == 0 { return RatMatrix3{}, errors.New("matrix is singular") } return adj.Mul(det.Invert()), nil }