package engine import ( "image" "math" "drjosh.dev/gurgle/geom" "github.com/hajimehoshi/ebiten/v2" ) var _ Drawer = tombstone{} type tombstone struct{} func (tombstone) Draw(*ebiten.Image, *ebiten.DrawImageOptions) {} func (tombstone) DrawAfter(x Drawer) bool { return x != tombstone{} } func (tombstone) DrawBefore(Drawer) bool { return false } func (tombstone) String() string { return "tombstone" } type drawList struct { list []Drawer rev map[Drawer]int } // edge reports if there is a draw ordering constraint between u and v (where // u draws before v). func edge(u, v Drawer, πsign image.Point) bool { // Common logic for known interfaces (BoundingBoxer, ZPositioner), to // simplify DrawOrderer implementations. switch u := u.(type) { case BoundingBoxer: ub := u.BoundingBox() switch v := v.(type) { case BoundingBoxer: vb := v.BoundingBox() if ub.Min.Z >= vb.Max.Z { // u is in front of v return false } if ub.Max.Z <= vb.Min.Z { // u is behind v return true } if πsign.X != 0 { if ub.Max.X*πsign.X <= vb.Min.X*πsign.X { // u is to the left of v return false } if ub.Min.X*πsign.X >= vb.Max.X*πsign.X { // u is to the right of v return true } } if πsign.Y != 0 { if ub.Max.Y*πsign.Y <= vb.Min.Y*πsign.Y { // u is above v return false } if ub.Min.Y*πsign.Y >= vb.Max.Y*πsign.Y { // u is below v return true } } case ZPositioner: return ub.Max.Z < v.ZPos() // u is before v } case ZPositioner: switch y := v.(type) { case BoundingBoxer: return u.ZPos() < y.BoundingBox().Min.Z case ZPositioner: return u.ZPos() < y.ZPos() } } // Fallback case: ask the components themselves if they have an opinion if do, ok := u.(DrawOrderer); ok && do.DrawBefore(v) { return true } if do, ok := v.(DrawOrderer); ok && do.DrawAfter(u) { return true } // No relation return false } var wholePlane = image.Rect(math.MinInt, math.MinInt, math.MaxInt, math.MaxInt) // Topological sort. Uses a projection π to flatten bounding boxes for // overlap tests, in order to reduce edge count. func (d *drawList) topsort(π geom.Projector) { // Produce edge lists and count indegrees - O(|V|^2) // TODO: optimise this edges := make([][]int, len(d.list)) indegree := make([]int, len(d.list)) for i, u := range d.list { if u == (tombstone{}) { // Prevents processing this vertex later on indegree[i] = -1 continue } // If we can't get a more specific bounding rect, assume entire plane. ub := wholePlane if x, ok := u.(BoundingBoxer); ok { ub = x.BoundingBox().BoundingRect(π) } // For each possible neighbor... for j, v := range d.list { if i == j || v == (tombstone{}) { continue } // Does it have a bounding rect? Do overlap test. if y, ok := v.(BoundingBoxer); ok { if vb := y.BoundingBox().BoundingRect(π); !ub.Overlaps(vb) { continue } } // If the edge goes u->v, add it. if edge(u, v, π.Sign()) { edges[i] = append(edges[i], j) indegree[j]++ } } } // Initialise queue with all the zero-indegree vertices var queue []int for i, n := range indegree { if n == 0 { queue = append(queue, i) } } // Process into new list. O(|V| + |E|) list := make([]Drawer, 0, len(d.list)) for len(queue) > 0 { // Get front of queue. i := queue[0] queue = queue[1:] // Add to output list. d.rev[d.list[i]] = len(list) list = append(list, d.list[i]) // Reduce indegree for all outgoing edges, enqueue if indegree now 0. for _, j := range edges[i] { indegree[j]-- if indegree[j] == 0 { queue = append(queue, j) } } } // Job done! d.list = list }