package engine import ( "encoding/gob" "image" "strconv" "github.com/hajimehoshi/ebiten/v2" ) var ( _ interface { Prepper Scanner } = &IsoVoxmap{} _ interface { Prepper Scanner Transformer } = &IsoVoxel{} _ interface { Drawer Transformer } = &IsoVoxelSide{} ) func init() { gob.Register(&IsoVoxmap{}) gob.Register(&IsoVoxel{}) gob.Register(&IsoVoxelSide{}) } // Point3 is a an element of int^3. type Point3 struct { X, Y, Z int } // Pt3(x, y, z) is shorthand for Point3{x, y, z}. func Pt3(x, y, z int) Point3 { return Point3{x, y, z} } // String returns a string representation of p like "(3,4,5)". func (p Point3) String() string { return "(" + strconv.Itoa(p.X) + "," + strconv.Itoa(p.Y) + "," + strconv.Itoa(p.Z) + ")" } // XY applies the Z-forgetting projection. (It returns just X and Y.) func (p Point3) XY() image.Point { return image.Point{p.X, p.Y} } // Add performs vector addition. func (p Point3) Add(q Point3) Point3 { return Point3{p.X + q.X, p.Y + q.Y, p.Z + q.Z} } // Sub performs vector subtraction. func (p Point3) Sub(q Point3) Point3 { return p.Add(q.Neg()) } // CMul performs componentwise multiplication. func (p Point3) CMul(q Point3) Point3 { return Point3{p.X * q.X, p.Y * q.Y, p.Z * q.Z} } // Mul performs scalar multiplication. func (p Point3) Mul(k int) Point3 { return Point3{p.X * k, p.Y * k, p.Z * k} } // CDiv performs componentwise division. func (p Point3) CDiv(q Point3) Point3 { return Point3{p.X / q.X, p.Y / q.Y, p.Z / q.Z} } // Div performs scalar division by k. func (p Point3) Div(k int) Point3 { return Point3{p.X / k, p.Y / k, p.Z / k} } // Neg returns the vector pointing in the opposite direction. func (p Point3) Neg() Point3 { return Point3{-p.X, -p.Y, -p.Z} } // Coord returns the components of the vector. func (p Point3) Coord() (x, y, z int) { return p.X, p.Y, p.Z } // IsoProject performs isometric projection of a 3D coordinate into 2D. // // If π.X = 0, the x returned is p.X; similarly for π.Y and y. // Otherwise, x projects to x + z/π.X and y projects to y + z/π.Y. func (p Point3) IsoProject(π image.Point) image.Point { /* I'm using the π character because I'm a maths wanker. Dividing is used because there's little reason for an isometric projection in a game to exaggerate the Z position. Integers are used to preserve that "pixel perfect" calculation in case you are making the next Celeste. */ q := image.Point{p.X, p.Y} if π.X != 0 { q.X += p.Z / π.X } if π.Y != 0 { q.Y += p.Z / π.Y } return q } // Box describes an axis-aligned rectangular prism. type Box struct { Min, Max Point3 } // String returns a string representation of b like "(3,4,5)-(6,5,8)". func (b Box) String() string { return b.Min.String() + "-" + b.Max.String() } // Empty reports whether the box contains no points. func (b Box) Empty() bool { return b.Min.X >= b.Max.X || b.Min.Y >= b.Max.Y || b.Min.Z >= b.Max.Z } // Eq reports whether b and c contain the same set of points. All empty boxes // are considered equal. func (b Box) Eq(c Box) bool { return b == c || b.Empty() && c.Empty() } // Overlaps reports whether b and c have non-empty intersection. func (b Box) Overlaps(c Box) bool { return !b.Empty() && !c.Empty() && b.Min.X < c.Max.X && c.Min.X < b.Max.X && b.Min.Y < c.Max.Y && c.Min.Y < b.Max.Y && b.Min.Z < c.Max.Z && c.Min.Z < b.Max.Z } // Size returns b's width, height, and depth. func (b Box) Size() Point3 { return b.Max.Sub(b.Min) } // IsoVoxmap implements a voxel map, painted using flat images in 2D. type IsoVoxmap struct { ID Disabled Hidden Map map[Point3]*IsoVoxel DrawOrderBias image.Point // so boxes overdraw correctly OffsetBack image.Point // offsets the image drawn for the back OffsetFront image.Point // offsets the image drawn for the front Projection image.Point // IsoProjection parameter Sheet Sheet VoxSize Point3 // size of each voxel } // Prepare makes sure all voxels know about the map and where they are, for // drawing. func (m *IsoVoxmap) Prepare(*Game) error { // Ensure all child units know about wall, which houses common attributes for p, u := range m.Map { u.pos, u.ivm = p, m } return nil } // Scan returns the Sheet and all voxels in the map. func (m *IsoVoxmap) Scan() []interface{} { c := make([]interface{}, 1, len(m.Map)+1) c[0] = &m.Sheet for _, voxel := range m.Map { c = append(c, voxel) } return c } // IsoVoxel is a voxel in an IsoVoxmap. type IsoVoxel struct { CellBack int // cell to draw for back side CellFront int // cell to draw for front side back IsoVoxelSide front IsoVoxelSide ivm *IsoVoxmap pos Point3 } // Prepare tells the front and back about the voxel. func (v *IsoVoxel) Prepare(*Game) error { v.back.vox = v v.front.vox = v v.front.front = true return nil } // Scan returns the back and front of the voxel. func (v *IsoVoxel) Scan() []interface{} { return []interface{}{&v.back, &v.front} } // Transform returns a translation of pos.CMul(VoxSize) iso-projected // (the top-left of the back of the voxel). func (v *IsoVoxel) Transform() (opts ebiten.DrawImageOptions) { p3 := v.pos.CMul(v.ivm.VoxSize) p2 := p3.IsoProject(v.ivm.Projection) opts.GeoM.Translate(cfloat(p2)) return opts } // IsoVoxelSide is a side of a voxel. type IsoVoxelSide struct { front bool vox *IsoVoxel } // Draw draws this side. func (v *IsoVoxelSide) Draw(screen *ebiten.Image, opts *ebiten.DrawImageOptions) { cell := v.vox.CellBack if v.front { cell = v.vox.CellFront } screen.DrawImage(v.vox.ivm.Sheet.SubImage(cell), opts) } // DrawOrder returns the Z of the nearest or farthest vertex of the voxel, // with a bias equal to the dot product of the bias vector with pos.XY(). func (v *IsoVoxelSide) DrawOrder() (int, int) { z := v.vox.pos.Z * v.vox.ivm.VoxSize.Z if v.front { z += v.vox.ivm.VoxSize.Z - 1 } return z, dot(v.vox.pos.XY(), v.vox.ivm.DrawOrderBias) } // Transform offsets the image by either OffsetBack or OffsetFront. func (v *IsoVoxelSide) Transform() (opts ebiten.DrawImageOptions) { if v.front { opts.GeoM.Translate(cfloat(v.vox.ivm.OffsetFront)) } else { opts.GeoM.Translate(cfloat(v.vox.ivm.OffsetBack)) } return opts }