package engine import ( "encoding/gob" "errors" "fmt" "image" "io/fs" "log" "reflect" "sort" "sync" "time" "drjosh.dev/gurgle/geom" "github.com/hajimehoshi/ebiten/v2" "github.com/hajimehoshi/ebiten/v2/ebitenutil" ) const topologicalDrawSort = true var _ interface { Disabler Hider Identifier Updater Scanner } = &Game{} var ( errNilComponent = errors.New("nil component") errNilParent = errors.New("nil parent") ) func init() { gob.Register(&Game{}) } // Game implements the ebiten methods using a collection of components. One // component must be the designated root component - usually a scene of some // kind. type Game struct { Disables Hides ScreenSize image.Point Root interface{} // typically a *Scene or SceneRef though Projection geom.IntProjection VoxelScale geom.Float3 dbmu sync.RWMutex byID map[string]Identifier // Named components by ID byAB map[abKey]map[interface{}]struct{} // Ancestor/behaviour index drawList drawList // draw list :| par map[interface{}]interface{} // par[x] is parent of x } // Draw draws everything. func (g *Game) Draw(screen *ebiten.Image) { if g.Hidden() { return } // Hiding a parent component should hide the child objects, and the // transform applied to a child should be the cumulative transform of all // parents as well. // cache memoises the results for each component. type state struct { hidden bool opts ebiten.DrawImageOptions } cache := map[interface{}]state{ g: {hidden: false}, } // Draw everything in g.drawList, where not hidden (itself or any parent) for _, d := range g.drawList.list { // Is d hidden itself? if h, ok := d.(Hider); ok && h.Hidden() { cache[d] = state{hidden: true} continue // skip drawing } // Walk up g.par to find the nearest state in accum. var st state stack := []interface{}{d} for p := g.par[d]; ; p = g.par[p] { if s, found := cache[p]; found { st = s break } stack = append(stack, p) } // Unwind the stack, accumulating state along the way. for len(stack) > 0 { l1 := len(stack) - 1 p := stack[l1] stack = stack[:l1] if h, ok := p.(Hider); ok { st.hidden = st.hidden || h.Hidden() } if st.hidden { cache[p] = state{hidden: true} continue } // p is not hidden, so compute its cumulative opts. if tf, ok := p.(Transformer); ok { st.opts = concatOpts(tf.Transform(), st.opts) } cache[p] = st } // Skip drawing if hidden. if st.hidden { continue } d.Draw(screen, &st.opts) } if true { // Infodump about draw list ebitenutil.DebugPrintAt(screen, fmt.Sprintf("len(drawList.list) = %d", len(g.drawList.list)), 0, 30) ebitenutil.DebugPrintAt(screen, fmt.Sprintf("len(drawList.rev) = %d", len(g.drawList.list)), 0, 45) } } // Layout returns the configured screen width/height. func (g *Game) Layout(outsideWidth, outsideHeight int) (w, h int) { return g.ScreenSize.X, g.ScreenSize.Y } // Update updates everything. func (g *Game) Update() error { if g.Disabled() { return nil } // Need to do a similar trick for Draw: disabling a parent object should // disable the child objects. // cache memoises the disabled state for each component. cache := map[interface{}]bool{ g: false, } // Update everything that is not disabled. // TODO: do it in a fixed order? map essentially randomises iteration order for u := range g.Query(g.Ident(), UpdaterType) { // Skip g (note g satisfies Updater, so this would infinitely recurse) if u == g { continue } // Is u disabled itself? if d, ok := u.(Disabler); ok && d.Disabled() { cache[u] = true continue } // Walk up g.par to find the nearest state in accum. var st bool stack := []interface{}{u} for p := g.par[u]; ; p = g.par[p] { if s, found := cache[p]; found { st = s break } stack = append(stack, p) } // Unwind the stack, accumulating state along the way. for len(stack) > 0 { l1 := len(stack) - 1 p := stack[l1] stack = stack[:l1] if d, ok := p.(Disabler); ok { st = st || d.Disabled() } cache[p] = st } // Skip updating if disabled. if st { continue } if err := u.(Updater).Update(); err != nil { return err } } // Sort the draw list (on every frame - this isn't as bad as it sounds) if topologicalDrawSort { g.drawList.topsort() } else { sort.Stable(g.drawList) // Truncate tombstones from the end. for i := g.drawList.Len() - 1; i >= 0; i-- { if g.drawList.list[i] != (tombstone{}) { break } g.drawList.list = g.drawList.list[:i] } } return nil } // Ident returns "__GAME__". func (g *Game) Ident() string { return "__GAME__" } // Component returns the component with a given ID, or nil if there is none. // This only returns sensible values for registered components (e.g. after // LoadAndPrepare). func (g *Game) Component(id string) Identifier { g.dbmu.RLock() defer g.dbmu.RUnlock() return g.byID[id] } // Parent returns the parent of a given component, or nil if there is none. // This only returns sensible values for registered components (e.g. after // LoadAndPrepare). func (g *Game) Parent(c interface{}) interface{} { g.dbmu.RLock() defer g.dbmu.RUnlock() return g.par[c] } // Query looks for components having both a given ancestor and implementing // a given behaviour (see Behaviors in interface.go). This only returns sensible // values after LoadAndPrepare. Note that every component is its own ancestor. func (g *Game) Query(ancestorID string, behaviour reflect.Type) map[interface{}]struct{} { g.dbmu.RLock() defer g.dbmu.RUnlock() return g.byAB[abKey{ancestorID, behaviour}] } // Scan implements Scanner. func (g *Game) Scan() []interface{} { return []interface{}{g.Root} } // PreorderWalk calls visit with every component and its parent, reachable from // the given component via Scan, for as long as visit returns nil. The parent // value passed to visit when visiting component will be nil. The parent will be // visited before the children. func PreorderWalk(component interface{}, visit func(component, parent interface{}) error) error { return preorderWalk(component, nil, visit) } func preorderWalk(component, parent interface{}, visit func(component, parent interface{}) error) error { if err := visit(component, parent); err != nil { return err } sc, ok := component.(Scanner) if !ok { return nil } for _, c := range sc.Scan() { if err := preorderWalk(c, component, visit); err != nil { return err } } return nil } // PostorderWalk calls visit with every component and its parent, reachable from // the given component via Scan, for as long as visit returns nil. The parent // value passed to visit when visiting component will be nil. The children will // be visited before the parent. func PostorderWalk(component interface{}, visit func(component, parent interface{}) error) error { return preorderWalk(component, nil, visit) } func postorderWalk(component, parent interface{}, visit func(component, parent interface{}) error) error { if sc, ok := component.(Scanner); ok { for _, c := range sc.Scan() { if err := postorderWalk(c, component, visit); err != nil { return err } } } return visit(component, parent) } // LoadAndPrepare first calls Load on all Loaders. Once loading is complete, it // builds the component databases and then calls Prepare on every Preparer. // LoadAndPrepare must be called before any calls to Component or Query. func (g *Game) LoadAndPrepare(assets fs.FS) error { if g.VoxelScale == (geom.Float3{}) { g.VoxelScale = geom.Float3{X: 1, Y: 1, Z: 1} } // Load all the Loaders. startLoad := time.Now() if err := PreorderWalk(g, func(c, _ interface{}) error { l, ok := c.(Loader) if !ok { return nil } return l.Load(assets) }); err != nil { return err } log.Printf("finished loading in %v", time.Since(startLoad)) // Build the component databases startBuild := time.Now() g.dbmu.Lock() g.byID = make(map[string]Identifier) g.byAB = make(map[abKey]map[interface{}]struct{}) g.drawList.list = nil g.drawList.rev = make(map[Drawer]int) g.par = make(map[interface{}]interface{}) if err := PreorderWalk(g, g.register); err != nil { return err } g.dbmu.Unlock() log.Printf("finished building db in %v", time.Since(startBuild)) // Prepare all the Preppers startPrep := time.Now() for p := range g.Query(g.Ident(), PrepperType) { if err := p.(Prepper).Prepare(g); err != nil { return err } } log.Printf("finished preparing in %v", time.Since(startPrep)) return nil } // Register registers a component into the component database (as the // child of a given parent). Passing a nil component or parent is an error. // Registering multiple components with the same ID is also an error. // Registering a component will recursively register all children found via // Scan. func (g *Game) Register(component, parent interface{}) error { if component == nil { return errNilComponent } if parent == nil && component != g { return errNilParent } g.dbmu.Lock() defer g.dbmu.Unlock() // walk goes in the right order for registering. return preorderWalk(component, parent, g.register) } func (g *Game) register(component, parent interface{}) error { // register in g.byID if needed if i, ok := component.(Identifier); ok { if id := i.Ident(); id != "" { if _, exists := g.byID[id]; exists { return fmt.Errorf("duplicate id %q", id) } g.byID[id] = i } } // register in g.par if parent != nil { g.par[component] = parent } // register in g.drawList if d, ok := component.(Drawer); ok { if _, exists := g.drawList.rev[d]; exists { // already registered return fmt.Errorf("double registration of %v", d) } g.drawList.rev[d] = len(g.drawList.list) g.drawList.list = append(g.drawList.list, d) } // register in g.byAB ct := reflect.TypeOf(component) for _, b := range Behaviours { if !ct.Implements(b) { continue } // TODO: better than O(len(path)^2) time and memory? for p := component; p != nil; p = g.par[p] { id, ok := p.(Identifier) if !ok || id.Ident() == "" { continue } k := abKey{id.Ident(), b} if g.byAB[k] == nil { g.byAB[k] = make(map[interface{}]struct{}) } g.byAB[k][component] = struct{}{} } } return nil } // Unregister removes the component from the component database. // Passing a nil component has no effect. Unregistering a component will // recursively unregister child components found via Scan. func (g *Game) Unregister(component interface{}) { if component == nil { return } g.dbmu.Lock() postorderWalk(component, nil, func(c, _ interface{}) error { g.unregister(c) return nil }) g.dbmu.Unlock() } func (g *Game) unregister(component interface{}) { // unregister from g.byAB, using g.par to trace the path ct := reflect.TypeOf(component) for _, b := range Behaviours { if !ct.Implements(b) { continue } for p := component; p != nil; p = g.par[p] { id, ok := p.(Identifier) if !ok || id.Ident() == "" { continue } k := abKey{id.Ident(), b} if g.byAB[k] == nil { continue } delete(g.byAB[k], component) } } // unregister from g.par delete(g.par, component) // unregister from g.drawList if d, ok := component.(Drawer); ok { if i, found := g.drawList.rev[d]; found { g.drawList.list[i] = tombstone{} delete(g.drawList.rev, d) } } // unregister from g.byID if needed if id, ok := component.(Identifier); ok && id.Ident() != "" { delete(g.byID, id.Ident()) } } // --------- Helper stuff --------- type abKey struct { ancestor string behaviour reflect.Type } // concatOpts returns the combined options (as though a was applied and then b). func concatOpts(a, b ebiten.DrawImageOptions) ebiten.DrawImageOptions { a.ColorM.Concat(b.ColorM) a.GeoM.Concat(b.GeoM) if b.CompositeMode != 0 { a.CompositeMode = b.CompositeMode } if b.Filter != 0 { a.Filter = b.Filter } return a }