ichigo/engine/game.go
2021-09-17 13:51:24 +10:00

462 lines
12 KiB
Go

package engine
import (
"encoding/gob"
"errors"
"fmt"
"image"
"io/fs"
"log"
"reflect"
"sort"
"sync"
"time"
"drjosh.dev/gurgle/geom"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
)
const topologicalDrawSort = true
var _ interface {
Disabler
Hider
Identifier
Updater
Scanner
} = &Game{}
var (
errNilComponent = errors.New("nil component")
errNilParent = errors.New("nil parent")
)
func init() {
gob.Register(&Game{})
}
// Game implements the ebiten methods using a collection of components. One
// component must be the designated root component - usually a scene of some
// kind.
type Game struct {
Disables
Hides
ScreenSize image.Point
Root interface{} // typically a *Scene or SceneRef though
Projection geom.IntProjection
VoxelScale geom.Float3
dbmu sync.RWMutex
byID map[string]Identifier // Named components by ID
byAB map[abKey]map[interface{}]struct{} // Ancestor/behaviour index
drawList drawList // draw list :|
par map[interface{}]interface{} // par[x] is parent of x
}
// Draw draws everything.
func (g *Game) Draw(screen *ebiten.Image) {
if g.Hidden() {
return
}
// Hiding a parent component should hide the child objects, and the
// transform applied to a child should be the cumulative transform of all
// parents as well.
// cache memoises the results for each component.
type state struct {
hidden bool
opts ebiten.DrawImageOptions
}
cache := map[interface{}]state{
g: {hidden: false},
}
// Draw everything in g.drawList, where not hidden (itself or any parent)
for _, d := range g.drawList.list {
// Is d hidden itself?
if h, ok := d.(Hider); ok && h.Hidden() {
cache[d] = state{hidden: true}
continue // skip drawing
}
// Walk up g.par to find the nearest state in accum.
var st state
stack := []interface{}{d}
for p := g.par[d]; ; p = g.par[p] {
if s, found := cache[p]; found {
st = s
break
}
stack = append(stack, p)
}
// Unwind the stack, accumulating state along the way.
for len(stack) > 0 {
l1 := len(stack) - 1
p := stack[l1]
stack = stack[:l1]
if h, ok := p.(Hider); ok {
st.hidden = st.hidden || h.Hidden()
}
if st.hidden {
cache[p] = state{hidden: true}
continue
}
// p is not hidden, so compute its cumulative opts.
if tf, ok := p.(Transformer); ok {
st.opts = concatOpts(tf.Transform(), st.opts)
}
cache[p] = st
}
// Skip drawing if hidden.
if st.hidden {
continue
}
d.Draw(screen, &st.opts)
}
if true {
// Infodump about draw list
ebitenutil.DebugPrintAt(screen, fmt.Sprintf("len(drawList.list) = %d", len(g.drawList.list)), 0, 30)
ebitenutil.DebugPrintAt(screen, fmt.Sprintf("len(drawList.rev) = %d", len(g.drawList.list)), 0, 45)
}
}
// Layout returns the configured screen width/height.
func (g *Game) Layout(outsideWidth, outsideHeight int) (w, h int) {
return g.ScreenSize.X, g.ScreenSize.Y
}
// Update updates everything.
func (g *Game) Update() error {
if g.Disabled() {
return nil
}
// Need to do a similar trick for Draw: disabling a parent object should
// disable the child objects.
// cache memoises the disabled state for each component.
cache := map[interface{}]bool{
g: false,
}
// Update everything that is not disabled.
// TODO: do it in a fixed order? map essentially randomises iteration order
for u := range g.Query(g.Ident(), UpdaterType) {
// Skip g (note g satisfies Updater, so this would infinitely recurse)
if u == g {
continue
}
// Is u disabled itself?
if d, ok := u.(Disabler); ok && d.Disabled() {
cache[u] = true
continue
}
// Walk up g.par to find the nearest state in accum.
var st bool
stack := []interface{}{u}
for p := g.par[u]; ; p = g.par[p] {
if s, found := cache[p]; found {
st = s
break
}
stack = append(stack, p)
}
// Unwind the stack, accumulating state along the way.
for len(stack) > 0 {
l1 := len(stack) - 1
p := stack[l1]
stack = stack[:l1]
if d, ok := p.(Disabler); ok {
st = st || d.Disabled()
}
cache[p] = st
}
// Skip updating if disabled.
if st {
continue
}
if err := u.(Updater).Update(); err != nil {
return err
}
}
// Sort the draw list (on every frame - this isn't as bad as it sounds)
if topologicalDrawSort {
g.drawList.topsort(g.Projection)
} else {
sort.Stable(g.drawList)
// Truncate tombstones from the end.
for i := g.drawList.Len() - 1; i >= 0; i-- {
if g.drawList.list[i] != (tombstone{}) {
break
}
g.drawList.list = g.drawList.list[:i]
}
}
return nil
}
// Ident returns "__GAME__".
func (g *Game) Ident() string { return "__GAME__" }
// Component returns the component with a given ID, or nil if there is none.
// This only returns sensible values for registered components (e.g. after
// LoadAndPrepare).
func (g *Game) Component(id string) Identifier {
g.dbmu.RLock()
defer g.dbmu.RUnlock()
return g.byID[id]
}
// Parent returns the parent of a given component, or nil if there is none.
// This only returns sensible values for registered components (e.g. after
// LoadAndPrepare).
func (g *Game) Parent(c interface{}) interface{} {
g.dbmu.RLock()
defer g.dbmu.RUnlock()
return g.par[c]
}
// Query looks for components having both a given ancestor and implementing
// a given behaviour (see Behaviors in interface.go). This only returns sensible
// values after LoadAndPrepare. Note that every component is its own ancestor.
func (g *Game) Query(ancestorID string, behaviour reflect.Type) map[interface{}]struct{} {
g.dbmu.RLock()
defer g.dbmu.RUnlock()
return g.byAB[abKey{ancestorID, behaviour}]
}
// Scan implements Scanner.
func (g *Game) Scan() []interface{} { return []interface{}{g.Root} }
// PreorderWalk calls visit with every component and its parent, reachable from
// the given component via Scan, for as long as visit returns nil. The parent
// value passed to visit when visiting component will be nil. The parent will be
// visited before the children.
func PreorderWalk(component interface{}, visit func(component, parent interface{}) error) error {
return preorderWalk(component, nil, visit)
}
func preorderWalk(component, parent interface{}, visit func(component, parent interface{}) error) error {
if err := visit(component, parent); err != nil {
return err
}
sc, ok := component.(Scanner)
if !ok {
return nil
}
for _, c := range sc.Scan() {
if err := preorderWalk(c, component, visit); err != nil {
return err
}
}
return nil
}
// PostorderWalk calls visit with every component and its parent, reachable from
// the given component via Scan, for as long as visit returns nil. The parent
// value passed to visit when visiting component will be nil. The children will
// be visited before the parent.
func PostorderWalk(component interface{}, visit func(component, parent interface{}) error) error {
return preorderWalk(component, nil, visit)
}
func postorderWalk(component, parent interface{}, visit func(component, parent interface{}) error) error {
if sc, ok := component.(Scanner); ok {
for _, c := range sc.Scan() {
if err := postorderWalk(c, component, visit); err != nil {
return err
}
}
}
return visit(component, parent)
}
// LoadAndPrepare first calls Load on all Loaders. Once loading is complete, it
// builds the component databases and then calls Prepare on every Preparer.
// LoadAndPrepare must be called before any calls to Component or Query.
func (g *Game) LoadAndPrepare(assets fs.FS) error {
if g.VoxelScale == (geom.Float3{}) {
g.VoxelScale = geom.Float3{X: 1, Y: 1, Z: 1}
}
// Load all the Loaders.
startLoad := time.Now()
if err := PreorderWalk(g, func(c, _ interface{}) error {
l, ok := c.(Loader)
if !ok {
return nil
}
return l.Load(assets)
}); err != nil {
return err
}
log.Printf("finished loading in %v", time.Since(startLoad))
// Build the component databases
startBuild := time.Now()
g.dbmu.Lock()
g.byID = make(map[string]Identifier)
g.byAB = make(map[abKey]map[interface{}]struct{})
g.drawList.list = nil
g.drawList.rev = make(map[Drawer]int)
g.par = make(map[interface{}]interface{})
if err := PreorderWalk(g, g.register); err != nil {
return err
}
g.dbmu.Unlock()
log.Printf("finished building db in %v", time.Since(startBuild))
// Prepare all the Preppers
startPrep := time.Now()
for p := range g.Query(g.Ident(), PrepperType) {
if err := p.(Prepper).Prepare(g); err != nil {
return err
}
}
log.Printf("finished preparing in %v", time.Since(startPrep))
return nil
}
// Register registers a component into the component database (as the
// child of a given parent). Passing a nil component or parent is an error.
// Registering multiple components with the same ID is also an error.
// Registering a component will recursively register all children found via
// Scan.
func (g *Game) Register(component, parent interface{}) error {
if component == nil {
return errNilComponent
}
if parent == nil && component != g {
return errNilParent
}
g.dbmu.Lock()
defer g.dbmu.Unlock()
// walk goes in the right order for registering.
return preorderWalk(component, parent, g.register)
}
func (g *Game) register(component, parent interface{}) error {
// register in g.byID if needed
if i, ok := component.(Identifier); ok {
if id := i.Ident(); id != "" {
if _, exists := g.byID[id]; exists {
return fmt.Errorf("duplicate id %q", id)
}
g.byID[id] = i
}
}
// register in g.par
if parent != nil {
g.par[component] = parent
}
// register in g.drawList
if d, ok := component.(Drawer); ok {
if _, exists := g.drawList.rev[d]; exists {
// already registered
return fmt.Errorf("double registration of %v", d)
}
g.drawList.rev[d] = len(g.drawList.list)
g.drawList.list = append(g.drawList.list, d)
}
// register in g.byAB
ct := reflect.TypeOf(component)
for _, b := range Behaviours {
if !ct.Implements(b) {
continue
}
// TODO: better than O(len(path)^2) time and memory?
for p := component; p != nil; p = g.par[p] {
id, ok := p.(Identifier)
if !ok || id.Ident() == "" {
continue
}
k := abKey{id.Ident(), b}
if g.byAB[k] == nil {
g.byAB[k] = make(map[interface{}]struct{})
}
g.byAB[k][component] = struct{}{}
}
}
return nil
}
// Unregister removes the component from the component database.
// Passing a nil component has no effect. Unregistering a component will
// recursively unregister child components found via Scan.
func (g *Game) Unregister(component interface{}) {
if component == nil {
return
}
g.dbmu.Lock()
postorderWalk(component, nil, func(c, _ interface{}) error {
g.unregister(c)
return nil
})
g.dbmu.Unlock()
}
func (g *Game) unregister(component interface{}) {
// unregister from g.byAB, using g.par to trace the path
ct := reflect.TypeOf(component)
for _, b := range Behaviours {
if !ct.Implements(b) {
continue
}
for p := component; p != nil; p = g.par[p] {
id, ok := p.(Identifier)
if !ok || id.Ident() == "" {
continue
}
k := abKey{id.Ident(), b}
if g.byAB[k] == nil {
continue
}
delete(g.byAB[k], component)
}
}
// unregister from g.par
delete(g.par, component)
// unregister from g.drawList
if d, ok := component.(Drawer); ok {
if i, found := g.drawList.rev[d]; found {
g.drawList.list[i] = tombstone{}
delete(g.drawList.rev, d)
}
}
// unregister from g.byID if needed
if id, ok := component.(Identifier); ok && id.Ident() != "" {
delete(g.byID, id.Ident())
}
}
// --------- Helper stuff ---------
type abKey struct {
ancestor string
behaviour reflect.Type
}
// concatOpts returns the combined options (as though a was applied and then b).
func concatOpts(a, b ebiten.DrawImageOptions) ebiten.DrawImageOptions {
a.ColorM.Concat(b.ColorM)
a.GeoM.Concat(b.GeoM)
if b.CompositeMode != 0 {
a.CompositeMode = b.CompositeMode
}
if b.Filter != 0 {
a.Filter = b.Filter
}
return a
}