277 lines
6.5 KiB
Go
277 lines
6.5 KiB
Go
package engine
|
|
|
|
import (
|
|
"image"
|
|
|
|
"drjosh.dev/gurgle/geom"
|
|
"github.com/hajimehoshi/ebiten/v2"
|
|
)
|
|
|
|
var _ Drawer = tombstone{}
|
|
|
|
type tombstone struct{}
|
|
|
|
func (tombstone) Draw(*ebiten.Image, *ebiten.DrawImageOptions) {}
|
|
|
|
func (tombstone) DrawAfter(x Drawer) bool { return x != tombstone{} }
|
|
func (tombstone) DrawBefore(Drawer) bool { return false }
|
|
|
|
func (tombstone) String() string { return "tombstone" }
|
|
|
|
type drawList struct {
|
|
list []Drawer
|
|
rev map[Drawer]int
|
|
}
|
|
|
|
// edge reports if there is a draw ordering constraint between u and v (where
|
|
// u draws before v).
|
|
func edge(u, v Drawer, πsign image.Point) bool {
|
|
// Common logic for known interfaces (BoundingBoxer, ZPositioner), to
|
|
// simplify DrawOrderer implementations.
|
|
switch u := u.(type) {
|
|
case BoundingBoxer:
|
|
ub := u.BoundingBox()
|
|
switch v := v.(type) {
|
|
case BoundingBoxer:
|
|
vb := v.BoundingBox()
|
|
if ub.Min.Z >= vb.Max.Z { // u is in front of v
|
|
return false
|
|
}
|
|
if ub.Max.Z <= vb.Min.Z { // u is behind v
|
|
return true
|
|
}
|
|
if πsign.X != 0 {
|
|
if ub.Max.X*πsign.X <= vb.Min.X*πsign.X { // u is to the left of v
|
|
return false
|
|
}
|
|
if ub.Min.X*πsign.X >= vb.Max.X*πsign.X { // u is to the right of v
|
|
return true
|
|
}
|
|
}
|
|
if πsign.Y != 0 {
|
|
if ub.Max.Y*πsign.Y <= vb.Min.Y*πsign.Y { // u is above v
|
|
return false
|
|
}
|
|
if ub.Min.Y*πsign.Y >= vb.Max.Y*πsign.Y { // u is below v
|
|
return true
|
|
}
|
|
}
|
|
case ZPositioner:
|
|
return ub.Max.Z < v.ZPos() // u is before v
|
|
}
|
|
|
|
case ZPositioner:
|
|
switch y := v.(type) {
|
|
case BoundingBoxer:
|
|
return u.ZPos() < y.BoundingBox().Min.Z
|
|
case ZPositioner:
|
|
return u.ZPos() < y.ZPos()
|
|
}
|
|
}
|
|
|
|
// Fallback case: ask the components themselves if they have an opinion
|
|
if do, ok := u.(DrawOrderer); ok && do.DrawBefore(v) {
|
|
return true
|
|
}
|
|
if do, ok := v.(DrawOrderer); ok && do.DrawAfter(u) {
|
|
return true
|
|
}
|
|
|
|
// No relation
|
|
return false
|
|
}
|
|
|
|
// Topological sort. Uses a projection π to flatten bounding boxes for
|
|
// overlap tests, in order to reduce edge count.
|
|
func (d *drawList) topsort(π geom.Projector) {
|
|
// Produce edge lists and count indegrees - O(|V|^2)
|
|
// TODO: optimise this
|
|
edges := make([][]int, len(d.list))
|
|
indegree := make([]int, len(d.list))
|
|
for i, u := range d.list {
|
|
if u == (tombstone{}) {
|
|
// Prevents processing this vertex later on
|
|
indegree[i] = -1
|
|
continue
|
|
}
|
|
// If we can't get a more specific bounding rect, assume entire plane.
|
|
var ubr image.Rectangle
|
|
ub, brCheck := u.(BoundingBoxer)
|
|
if brCheck {
|
|
ubr = ub.BoundingBox().BoundingRect(π)
|
|
}
|
|
// For each possible neighbor...
|
|
for j, v := range d.list {
|
|
if i == j || v == (tombstone{}) {
|
|
continue
|
|
}
|
|
// Does it have a bounding rect? Do overlap test.
|
|
if brCheck {
|
|
if vb, ok := v.(BoundingBoxer); ok {
|
|
if vbr := vb.BoundingBox().BoundingRect(π); !ubr.Overlaps(vbr) {
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the edge goes u->v, add it.
|
|
if edge(u, v, π.Sign()) {
|
|
edges[i] = append(edges[i], j)
|
|
indegree[j]++
|
|
}
|
|
}
|
|
}
|
|
|
|
// Initialise queue with all the zero-indegree vertices
|
|
queue := make([]int, 0, len(d.list))
|
|
for i, n := range indegree {
|
|
if n == 0 {
|
|
queue = append(queue, i)
|
|
}
|
|
}
|
|
|
|
// Process into new list. O(|V| + |E|)
|
|
list := make([]Drawer, 0, len(d.list))
|
|
for len(queue) > 0 {
|
|
// Get front of queue.
|
|
i := queue[0]
|
|
queue = queue[1:]
|
|
// Add to output list.
|
|
d.rev[d.list[i]] = len(list)
|
|
list = append(list, d.list[i])
|
|
// Reduce indegree for all outgoing edges, enqueue if indegree now 0.
|
|
for _, j := range edges[i] {
|
|
indegree[j]--
|
|
if indegree[j] == 0 {
|
|
queue = append(queue, j)
|
|
}
|
|
}
|
|
}
|
|
// Job done!
|
|
d.list = list
|
|
}
|
|
|
|
type drawDAG struct {
|
|
*dag
|
|
chunks map[image.Point]set
|
|
chunksRev map[Drawer]image.Rectangle
|
|
chunkSize int
|
|
proj geom.Projector
|
|
}
|
|
|
|
func newDrawDAG(chunkSize int) *drawDAG {
|
|
return &drawDAG{
|
|
dag: newDAG(),
|
|
chunks: make(map[image.Point]set), // chunk coord -> drawers with bounding rects intersecting chunk
|
|
chunksRev: make(map[Drawer]image.Rectangle), // drawer -> rectangle of chunk coords
|
|
chunkSize: chunkSize,
|
|
}
|
|
}
|
|
|
|
// add adds a Drawer and any needed edges to the DAG and chunk map.
|
|
func (d *drawDAG) add(x Drawer) {
|
|
bb := x.(BoundingBoxer)
|
|
br := bb.BoundingBox().BoundingRect(d.proj)
|
|
min := br.Min.Div(d.chunkSize)
|
|
max := br.Max.Sub(image.Pt(1, 1)).Div(d.chunkSize)
|
|
cand := make(set)
|
|
for j := min.Y; j <= max.Y; j++ {
|
|
for i := min.X; i <= max.X; i++ {
|
|
cell := d.chunks[image.Pt(i, j)]
|
|
// Merge cell into cand
|
|
for c := range cell {
|
|
cand[c] = struct{}{}
|
|
}
|
|
// Add x to cell
|
|
cell[x] = struct{}{}
|
|
}
|
|
}
|
|
// Add edges between x and elements of cand
|
|
for c := range cand {
|
|
y := c.(Drawer)
|
|
switch {
|
|
case edge(y, x, d.proj.Sign()):
|
|
d.dag.addEdge(y, x)
|
|
case edge(x, y, d.proj.Sign()):
|
|
d.dag.addEdge(x, y)
|
|
}
|
|
}
|
|
}
|
|
|
|
type set map[interface{}]struct{}
|
|
|
|
type dag struct {
|
|
in, out map[interface{}]set
|
|
}
|
|
|
|
func newDAG() *dag {
|
|
return &dag{
|
|
in: make(map[interface{}]set),
|
|
out: make(map[interface{}]set),
|
|
}
|
|
}
|
|
|
|
// addEdge adds the edge u-v in O(1).
|
|
func (d *dag) addEdge(u, v interface{}) {
|
|
if d.in[v] == nil {
|
|
d.in[v] = make(set)
|
|
}
|
|
if d.out[u] == nil {
|
|
d.out[u] = make(set)
|
|
}
|
|
d.in[v][u] = struct{}{}
|
|
d.out[u][v] = struct{}{}
|
|
}
|
|
|
|
// removeEdge removes the edge u-v in O(1).
|
|
func (d *dag) removeEdge(u, v interface{}) {
|
|
delete(d.in[v], u)
|
|
delete(d.out[u], v)
|
|
}
|
|
|
|
// removeVertex removes all in and out edges associated with v in O(degree(v)).
|
|
func (d *dag) removeVertex(v interface{}) {
|
|
for u := range d.in[v] {
|
|
// u-v is no longer an edge
|
|
delete(d.out[u], v)
|
|
}
|
|
for w := range d.out[v] {
|
|
// v-w is no longer an edge
|
|
delete(d.in[w], v)
|
|
}
|
|
delete(d.in, v)
|
|
delete(d.out, v)
|
|
}
|
|
|
|
// topIterate visits each vertex in topological order, in time O(|V| + |E|) and
|
|
// O(|V|) temporary memory.
|
|
func (d *dag) topIterate(visit func(interface{})) {
|
|
// Count indegrees - indegree(v) = len(d.in[v]) for each v.
|
|
// If indegree(v) = 0, enqueue. Total: O(|V|).
|
|
queue := make([]interface{}, 0, len(d.in))
|
|
indegree := make(map[interface{}]int)
|
|
for u, e := range d.in {
|
|
if len(e) == 0 {
|
|
queue = append(queue, u)
|
|
} else {
|
|
indegree[u] = len(e)
|
|
}
|
|
}
|
|
|
|
// Visit every vertex (O(|V|)) and decrement indegrees for every out edge
|
|
// of each vertex visited (O(|E|)). Total: O(|V|+|E|).
|
|
for len(queue) > 0 {
|
|
u := queue[0]
|
|
visit(u)
|
|
queue = queue[1:]
|
|
|
|
// Decrement indegree for all out edges, and enqueue target if its
|
|
// indegree is now 0.
|
|
for v := range d.out[u] {
|
|
indegree[v]--
|
|
if indegree[v] == 0 {
|
|
queue = append(queue, v)
|
|
}
|
|
}
|
|
}
|
|
}
|