/* Copyright 2024 Josh Deprez Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package router import ( "bytes" "context" "log" "net" "sync" "time" "gitea.drjosh.dev/josh/jrouter/aurp" "github.com/sfiera/multitalk/pkg/ddp" ) const ( // TODO: check these parameters lastHeardFromTimer = 90 * time.Second tickleRetryLimit = 10 sendRetryTimer = 10 * time.Second sendRetryLimit = 5 reconnectTimer = 10 * time.Minute updateTimer = 10 * time.Second ) type ReceiverState int const ( ReceiverUnconnected ReceiverState = iota ReceiverConnected ReceiverWaitForOpenRsp ReceiverWaitForRIRsp ReceiverWaitForTickleAck ) func (rs ReceiverState) String() string { switch rs { case ReceiverUnconnected: return "unconnected" case ReceiverConnected: return "connected" case ReceiverWaitForOpenRsp: return "waiting for Open-Rsp" case ReceiverWaitForRIRsp: return "waiting for RI-Rsp" case ReceiverWaitForTickleAck: return "waiting for Tickle-Ack" default: return "unknown" } } type SenderState int const ( SenderUnconnected SenderState = iota SenderConnected SenderWaitForRIRspAck SenderWaitForRIUpdAck SenderWaitForRDAck ) func (ss SenderState) String() string { switch ss { case SenderUnconnected: return "unconnected" case SenderConnected: return "connected" case SenderWaitForRIRspAck: return "waiting for RI-Ack for RI-Rsp" case SenderWaitForRIUpdAck: return "waiting for RI-Ack for RI-Upd" case SenderWaitForRDAck: return "waiting for RI-Ack for RD" default: return "unknown" } } // AURPPeer handles the peering with a peer AURP router. type AURPPeer struct { // AURP-Tr state for producing packets. Transport *aurp.Transport // Connection to reply to packets on. UDPConn *net.UDPConn // The string that appeared in the config file / peer list file (with a // ":387" appended as necessary). // May be empty if this peer was not configured (it connected to us). ConfiguredAddr string // The resolved address of the peer. RemoteAddr *net.UDPAddr // Incoming packet channel. ReceiveCh chan aurp.Packet // Route table (the peer will add/remove/update routes and zones) RouteTable *RouteTable // The internal states below are only set within the Handle loop, but can // be read concurrently from outside. mu sync.RWMutex rstate ReceiverState sstate SenderState lastReconnect time.Time lastHeardFrom time.Time lastSend time.Time // TODO: clarify use of lastSend / sendRetries lastUpdate time.Time sendRetries int } func (p *AURPPeer) Forward(ddpkt *ddp.ExtPacket) error { outPkt, err := ddp.ExtMarshal(*ddpkt) if err != nil { return err } _, err = p.send(p.Transport.NewAppleTalkPacket(outPkt)) return err } func (p *AURPPeer) ReceiverState() ReceiverState { p.mu.RLock() defer p.mu.RUnlock() return p.rstate } func (p *AURPPeer) SenderState() SenderState { p.mu.RLock() defer p.mu.RUnlock() return p.sstate } func (p *AURPPeer) LastReconnectAgo() string { p.mu.RLock() defer p.mu.RUnlock() return ago(p.lastReconnect) } func (p *AURPPeer) LastHeardFromAgo() string { p.mu.RLock() defer p.mu.RUnlock() return ago(p.lastHeardFrom) } func (p *AURPPeer) LastSendAgo() string { p.mu.RLock() defer p.mu.RUnlock() return ago(p.lastSend) } func (p *AURPPeer) LastUpdateAgo() string { p.mu.RLock() defer p.mu.RUnlock() return ago(p.lastUpdate) } func (p *AURPPeer) SendRetries() int { p.mu.RLock() defer p.mu.RUnlock() return p.sendRetries } func (p *AURPPeer) setRState(rstate ReceiverState) { p.mu.Lock() defer p.mu.Unlock() p.rstate = rstate } func (p *AURPPeer) setSState(sstate SenderState) { p.mu.Lock() defer p.mu.Unlock() p.sstate = sstate } func (p *AURPPeer) incSendRetries() { p.mu.Lock() defer p.mu.Unlock() p.sendRetries++ } func (p *AURPPeer) resetSendRetries() { p.mu.Lock() defer p.mu.Unlock() p.sendRetries = 0 } func (p *AURPPeer) bumpLastHeardFrom() { p.mu.Lock() defer p.mu.Unlock() p.lastHeardFrom = time.Now() } func (p *AURPPeer) bumpLastReconnect() { p.mu.Lock() defer p.mu.Unlock() p.lastReconnect = time.Now() } func (p *AURPPeer) bumpLastSend() { p.mu.Lock() defer p.mu.Unlock() p.lastSend = time.Now() } func (p *AURPPeer) bumpLastUpdate() { p.mu.Lock() defer p.mu.Unlock() p.lastUpdate = time.Now() } func (p *AURPPeer) disconnect() { p.mu.Lock() defer p.mu.Unlock() p.rstate = ReceiverUnconnected p.sstate = SenderUnconnected } // send encodes and sends pkt to the remote host. func (p *AURPPeer) send(pkt aurp.Packet) (int, error) { var b bytes.Buffer if _, err := pkt.WriteTo(&b); err != nil { return 0, err } // log.Printf("AURP Peer: Sending %T (len %d) to %v", pkt, b.Len(), p.RemoteAddr) return p.UDPConn.WriteToUDP(b.Bytes(), p.RemoteAddr) } func (p *AURPPeer) Handle(ctx context.Context) error { rticker := time.NewTicker(1 * time.Second) defer rticker.Stop() sticker := time.NewTicker(1 * time.Second) defer sticker.Stop() p.mu.Lock() p.lastReconnect = time.Now() p.lastHeardFrom = time.Now() p.lastSend = time.Now() // TODO: clarify use of lastSend / sendRetries p.lastUpdate = time.Now() p.sendRetries = 0 p.mu.Unlock() var lastRISent aurp.Packet p.disconnect() // Write an Open-Req packet if _, err := p.send(p.Transport.NewOpenReqPacket(nil)); err != nil { log.Printf("AURP Peer: Couldn't send Open-Req packet: %v", err) return err } p.setRState(ReceiverWaitForOpenRsp) for { select { case <-ctx.Done(): if p.sstate == SenderUnconnected { // Return immediately return ctx.Err() } // Send a best-effort Router Down before returning lastRISent = p.Transport.NewRDPacket(aurp.ErrCodeNormalClose) if _, err := p.send(lastRISent); err != nil { log.Printf("Couldn't send RD packet: %v", err) } return ctx.Err() case <-rticker.C: switch p.rstate { case ReceiverWaitForOpenRsp: if time.Since(p.lastSend) <= sendRetryTimer { break } if p.sendRetries >= sendRetryLimit { log.Printf("AURP Peer: Send retry limit reached while waiting for Open-Rsp, closing connection") p.setRState(ReceiverUnconnected) break } // Send another Open-Req p.incSendRetries() p.bumpLastSend() if _, err := p.send(p.Transport.NewOpenReqPacket(nil)); err != nil { log.Printf("AURP Peer: Couldn't send Open-Req packet: %v", err) return err } case ReceiverConnected: // Check LHFT, send tickle? if time.Since(p.lastHeardFrom) <= lastHeardFromTimer { break } if _, err := p.send(p.Transport.NewTicklePacket()); err != nil { log.Printf("AURP Peer: Couldn't send Tickle: %v", err) return err } p.setRState(ReceiverWaitForTickleAck) p.resetSendRetries() p.bumpLastSend() case ReceiverWaitForTickleAck: if time.Since(p.lastSend) <= sendRetryTimer { break } if p.sendRetries >= tickleRetryLimit { log.Printf("AURP Peer: Send retry limit reached while waiting for Tickle-Ack, closing connection") p.setRState(ReceiverUnconnected) p.RouteTable.DeleteAURPPeer(p) break } p.incSendRetries() p.bumpLastSend() if _, err := p.send(p.Transport.NewTicklePacket()); err != nil { log.Printf("AURP Peer: Couldn't send Tickle: %v", err) return err } // still in Wait For Tickle-Ack case ReceiverWaitForRIRsp: if time.Since(p.lastSend) <= sendRetryTimer { break } if p.sendRetries >= sendRetryLimit { log.Printf("AURP Peer: Send retry limit reached while waiting for RI-Rsp, closing connection") p.setRState(ReceiverUnconnected) p.RouteTable.DeleteAURPPeer(p) break } // RI-Req is stateless, so we don't need to cache the one we // sent earlier just to send it again p.incSendRetries() p.bumpLastSend() if _, err := p.send(p.Transport.NewRIReqPacket()); err != nil { log.Printf("AURP Peer: Couldn't send RI-Req packet: %v", err) return err } // still in Wait For RI-Rsp case ReceiverUnconnected: // Data receiver is unconnected. If data sender is connected, // send a null RI-Upd to check if the sender is also unconnected if p.sstate == SenderConnected && time.Since(p.lastSend) > sendRetryTimer { if p.sendRetries >= sendRetryLimit { log.Printf("AURP Peer: Send retry limit reached while probing sender connect, closing connection") } p.incSendRetries() p.bumpLastSend() aurp.Inc(&p.Transport.LocalSeq) events := aurp.EventTuples{{ EventCode: aurp.EventCodeNull, }} lastRISent = p.Transport.NewRIUpdPacket(events) if _, err := p.send(lastRISent); err != nil { log.Printf("AURP Peer: Couldn't send RI-Upd packet: %v", err) return err } p.setSState(SenderWaitForRIUpdAck) } if p.ConfiguredAddr != "" { // Periodically try to reconnect, if this peer is in the config file if time.Since(p.lastReconnect) <= reconnectTimer { break } // In case it's a DNS name, re-resolve it before reconnecting raddr, err := net.ResolveUDPAddr("udp4", p.ConfiguredAddr) if err != nil { log.Print("couldn't resolve UDP address, skipping") break } // log.Printf("AURP Peer: resolved %q to %v", p.ConfiguredAddr, raddr) p.RemoteAddr = raddr p.bumpLastReconnect() p.resetSendRetries() p.bumpLastSend() if _, err := p.send(p.Transport.NewOpenReqPacket(nil)); err != nil { log.Printf("AURP Peer: Couldn't send Open-Req packet: %v", err) return err } p.setRState(ReceiverWaitForOpenRsp) } } case <-sticker.C: switch p.sstate { case SenderUnconnected: // Do nothing case SenderConnected: if time.Since(p.lastUpdate) <= updateTimer { break } // TODO: is there a routing update to send? p.bumpLastUpdate() case SenderWaitForRIRspAck, SenderWaitForRIUpdAck: if time.Since(p.lastSend) <= sendRetryTimer { break } if lastRISent == nil { log.Print("AURP Peer: sender retry: lastRISent = nil?") continue } if p.sendRetries >= sendRetryLimit { log.Printf("AURP Peer: Send retry limit reached, closing connection") p.setSState(SenderUnconnected) continue } p.incSendRetries() p.bumpLastSend() if _, err := p.send(lastRISent); err != nil { log.Printf("AURP Peer: Couldn't re-send %T: %v", lastRISent, err) return err } case SenderWaitForRDAck: if time.Since(p.lastSend) <= sendRetryTimer { break } p.setSState(SenderUnconnected) } case pkt := <-p.ReceiveCh: p.bumpLastHeardFrom() switch pkt := pkt.(type) { case *aurp.OpenReqPacket: if p.sstate != SenderUnconnected { log.Printf("AURP Peer: Open-Req received but sender state is not unconnected (was %v)", p.sstate) } // The peer tells us their connection ID in Open-Req. p.Transport.RemoteConnID = pkt.ConnectionID // Formulate a response. var orsp *aurp.OpenRspPacket switch { case pkt.Version != 1: // Respond with Open-Rsp with unknown version error. orsp = p.Transport.NewOpenRspPacket(0, int16(aurp.ErrCodeInvalidVersion), nil) case len(pkt.Options) > 0: // Options? OPTIONS? We don't accept no stinkin' _options_ orsp = p.Transport.NewOpenRspPacket(0, int16(aurp.ErrCodeOptionNegotiation), nil) default: // Accept it I guess. orsp = p.Transport.NewOpenRspPacket(0, 1, nil) } if _, err := p.send(orsp); err != nil { log.Printf("AURP Peer: Couldn't send Open-Rsp: %v", err) return err } if orsp.RateOrErrCode >= 0 { p.setSState(SenderConnected) } // If receiver is unconnected, commence connecting if p.rstate == ReceiverUnconnected { p.resetSendRetries() p.bumpLastSend() if _, err := p.send(p.Transport.NewOpenReqPacket(nil)); err != nil { log.Printf("AURP Peer: Couldn't send Open-Req packet: %v", err) return err } p.setRState(ReceiverWaitForOpenRsp) } case *aurp.OpenRspPacket: if p.rstate != ReceiverWaitForOpenRsp { log.Printf("AURP Peer: Received Open-Rsp but was not waiting for one (receiver state was %v)", p.rstate) } if pkt.RateOrErrCode < 0 { // It's an error code. log.Printf("AURP Peer: Open-Rsp error code from peer %v: %d", p.RemoteAddr.IP, pkt.RateOrErrCode) p.setRState(ReceiverUnconnected) break } //log.Printf("AURP Peer: Data receiver is connected!") p.setRState(ReceiverConnected) // Send an RI-Req p.resetSendRetries() if _, err := p.send(p.Transport.NewRIReqPacket()); err != nil { log.Printf("AURP Peer: Couldn't send RI-Req packet: %v", err) return err } p.setRState(ReceiverWaitForRIRsp) case *aurp.RIReqPacket: if p.sstate != SenderConnected { log.Printf("AURP Peer: Received RI-Req but was not expecting one (sender state was %v)", p.sstate) } var nets aurp.NetworkTuples for _, r := range p.RouteTable.ValidNonAURPRoutes() { nets = append(nets, aurp.NetworkTuple{ Extended: r.Extended, RangeStart: r.NetStart, RangeEnd: r.NetEnd, Distance: r.Distance, }) } p.Transport.LocalSeq = 1 // TODO: Split tuples across multiple packets as required lastRISent = p.Transport.NewRIRspPacket(aurp.RoutingFlagLast, nets) if _, err := p.send(lastRISent); err != nil { log.Printf("AURP Peer: Couldn't send RI-Rsp packet: %v", err) return err } p.setSState(SenderWaitForRIRspAck) case *aurp.RIRspPacket: if p.rstate != ReceiverWaitForRIRsp { log.Printf("Received RI-Rsp but was not waiting for one (receiver state was %v)", p.rstate) } log.Printf("AURP Peer: Learned about these networks: %v", pkt.Networks) for _, nt := range pkt.Networks { p.RouteTable.InsertAURPRoute( p, nt.Extended, ddp.Network(nt.RangeStart), ddp.Network(nt.RangeEnd), nt.Distance+1, ) } // TODO: track which networks we don't have zone info for, and // only set SZI for those ? if _, err := p.send(p.Transport.NewRIAckPacket(pkt.ConnectionID, pkt.Sequence, aurp.RoutingFlagSendZoneInfo)); err != nil { log.Printf("AURP Peer: Couldn't send RI-Ack packet: %v", err) return err } if pkt.Flags&aurp.RoutingFlagLast != 0 { // No longer waiting for an RI-Rsp p.setRState(ReceiverConnected) } case *aurp.RIAckPacket: switch p.sstate { case SenderWaitForRIRspAck: // We sent an RI-Rsp, this is the RI-Ack we expected. case SenderWaitForRIUpdAck: // We sent an RI-Upd, this is the RI-Ack we expected. case SenderWaitForRDAck: // We sent an RD... Why are we here? continue default: log.Printf("AURP Peer: Received RI-Ack but was not waiting for one (sender state was %v)", p.sstate) } p.setSState(SenderConnected) p.resetSendRetries() // If SZI flag is set, send ZI-Rsp (transaction) if pkt.Flags&aurp.RoutingFlagSendZoneInfo != 0 { // Inspect last routing info packet sent to determine // networks to gather names for var nets []ddp.Network switch last := lastRISent.(type) { case *aurp.RIRspPacket: for _, nt := range last.Networks { nets = append(nets, nt.RangeStart) } case *aurp.RIUpdPacket: for _, et := range last.Events { // Only networks that were added if et.EventCode != aurp.EventCodeNA { continue } nets = append(nets, et.RangeStart) } } zones := p.RouteTable.ZonesForNetworks(nets) // TODO: split ZI-Rsp packets similarly to ZIP Replies if _, err := p.send(p.Transport.NewZIRspPacket(zones)); err != nil { log.Printf("AURP Peer: Couldn't send ZI-Rsp packet: %v", err) } } // TODO: Continue sending next RI-Rsp (streamed)? if p.rstate == ReceiverUnconnected { // Receiver is unconnected, but their receiver sent us an // RI-Ack for something // Try to reconnect? p.resetSendRetries() p.bumpLastSend() if _, err := p.send(p.Transport.NewOpenReqPacket(nil)); err != nil { log.Printf("AURP Peer: Couldn't send Open-Req packet: %v", err) return err } p.setRState(ReceiverWaitForOpenRsp) } case *aurp.RIUpdPacket: var ackFlag aurp.RoutingFlag for _, et := range pkt.Events { log.Printf("AURP Peer: RI-Upd event %v", et) switch et.EventCode { case aurp.EventCodeNull: // Do nothing except respond with RI-Ack case aurp.EventCodeNA: if err := p.RouteTable.InsertAURPRoute( p, et.Extended, et.RangeStart, et.RangeEnd, et.Distance+1, ); err != nil { log.Printf("AURP Peer: couldn't insert route: %v", err) } ackFlag = aurp.RoutingFlagSendZoneInfo case aurp.EventCodeND: p.RouteTable.DeleteAURPPeerNetwork(p, et.RangeStart) case aurp.EventCodeNDC: p.RouteTable.UpdateAURPRouteDistance(p, et.RangeStart, et.Distance+1) case aurp.EventCodeNRC: // "An exterior router sends a Network Route Change // (NRC) event if the path to an exported network // through its local internet changes to a path through // a tunneling port, causing split-horizoned processing // to eliminate that network’s routing information." p.RouteTable.DeleteAURPPeerNetwork(p, et.RangeStart) case aurp.EventCodeZC: // "This event is reserved for future use." } } if _, err := p.send(p.Transport.NewRIAckPacket(pkt.ConnectionID, pkt.Sequence, ackFlag)); err != nil { log.Printf("AURP Peer: Couldn't send RI-Ack: %v", err) return err } case *aurp.RDPacket: if p.rstate == ReceiverUnconnected || p.rstate == ReceiverWaitForOpenRsp { log.Printf("AURP Peer: Received RD but was not expecting one (receiver state was %v)", p.rstate) } log.Printf("AURP Peer: Router Down: error code %d %s", pkt.ErrorCode, pkt.ErrorCode) p.RouteTable.DeleteAURPPeer(p) // Respond with RI-Ack if _, err := p.send(p.Transport.NewRIAckPacket(pkt.ConnectionID, pkt.Sequence, 0)); err != nil { log.Printf("AURP Peer: Couldn't send RI-Ack: %v", err) return err } // Connections closed p.disconnect() case *aurp.ZIReqPacket: // TODO: split ZI-Rsp packets similarly to ZIP Replies zones := p.RouteTable.ZonesForNetworks(pkt.Networks) if _, err := p.send(p.Transport.NewZIRspPacket(zones)); err != nil { log.Printf("AURP Peer: Couldn't send ZI-Rsp packet: %v", err) return err } case *aurp.ZIRspPacket: log.Printf("AURP Peer: Learned about these zones: %v", pkt.Zones) for _, zt := range pkt.Zones { p.RouteTable.AddZonesToNetwork(zt.Network, zt.Name) } case *aurp.GDZLReqPacket: if _, err := p.send(p.Transport.NewGDZLRspPacket(-1, nil)); err != nil { log.Printf("AURP Peer: Couldn't send GDZL-Rsp packet: %v", err) return err } case *aurp.GDZLRspPacket: log.Printf("AURP Peer: Received a GDZL-Rsp, but I wouldn't have sent a GDZL-Req - that's weird") case *aurp.GZNReqPacket: if _, err := p.send(p.Transport.NewGZNRspPacket(pkt.ZoneName, false, nil)); err != nil { log.Printf("AURP Peer: Couldn't send GZN-Rsp packet: %v", err) return err } case *aurp.GZNRspPacket: log.Printf("AURP Peer: Received a GZN-Rsp, but I wouldn't have sent a GZN-Req - that's weird") case *aurp.TicklePacket: // Immediately respond with Tickle-Ack if _, err := p.send(p.Transport.NewTickleAckPacket()); err != nil { log.Printf("AURP Peer: Couldn't send Tickle-Ack: %v", err) return err } case *aurp.TickleAckPacket: if p.rstate != ReceiverWaitForTickleAck { log.Printf("AURP Peer: Received Tickle-Ack but was not waiting for one (receiver state was %v)", p.rstate) } p.setRState(ReceiverConnected) } } } }