// Package quantile computes approximate quantiles over an unbounded data // stream within low memory and CPU bounds. // // A small amount of accuracy is traded to achieve the above properties. // // Multiple streams can be merged before calling Query to generate a single set // of results. This is meaningful when the streams represent the same type of // data. See Merge and Samples. // // For more detailed information about the algorithm used, see: // // # Effective Computation of Biased Quantiles over Data Streams // // http://www.cs.rutgers.edu/~muthu/bquant.pdf package quantile import ( "math" "sort" ) // Sample holds an observed value and meta information for compression. JSON // tags have been added for convenience. type Sample struct { Value float64 `json:",string"` Width float64 `json:",string"` Delta float64 `json:",string"` } // Samples represents a slice of samples. It implements sort.Interface. type Samples []Sample func (a Samples) Len() int { return len(a) } func (a Samples) Less(i, j int) bool { return a[i].Value < a[j].Value } func (a Samples) Swap(i, j int) { a[i], a[j] = a[j], a[i] } type invariant func(s *stream, r float64) float64 // NewLowBiased returns an initialized Stream for low-biased quantiles // (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but // error guarantees can still be given even for the lower ranks of the data // distribution. // // The provided epsilon is a relative error, i.e. the true quantile of a value // returned by a query is guaranteed to be within (1±Epsilon)*Quantile. // // See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error // properties. func NewLowBiased(epsilon float64) *Stream { ƒ := func(s *stream, r float64) float64 { return 2 * epsilon * r } return newStream(ƒ) } // NewHighBiased returns an initialized Stream for high-biased quantiles // (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but // error guarantees can still be given even for the higher ranks of the data // distribution. // // The provided epsilon is a relative error, i.e. the true quantile of a value // returned by a query is guaranteed to be within 1-(1±Epsilon)*(1-Quantile). // // See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error // properties. func NewHighBiased(epsilon float64) *Stream { ƒ := func(s *stream, r float64) float64 { return 2 * epsilon * (s.n - r) } return newStream(ƒ) } // NewTargeted returns an initialized Stream concerned with a particular set of // quantile values that are supplied a priori. Knowing these a priori reduces // space and computation time. The targets map maps the desired quantiles to // their absolute errors, i.e. the true quantile of a value returned by a query // is guaranteed to be within (Quantile±Epsilon). // // See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error properties. func NewTargeted(targetMap map[float64]float64) *Stream { // Convert map to slice to avoid slow iterations on a map. // ƒ is called on the hot path, so converting the map to a slice // beforehand results in significant CPU savings. targets := targetMapToSlice(targetMap) ƒ := func(s *stream, r float64) float64 { var m = math.MaxFloat64 var f float64 for _, t := range targets { if t.quantile*s.n <= r { f = (2 * t.epsilon * r) / t.quantile } else { f = (2 * t.epsilon * (s.n - r)) / (1 - t.quantile) } if f < m { m = f } } return m } return newStream(ƒ) } type target struct { quantile float64 epsilon float64 } func targetMapToSlice(targetMap map[float64]float64) []target { targets := make([]target, 0, len(targetMap)) for quantile, epsilon := range targetMap { t := target{ quantile: quantile, epsilon: epsilon, } targets = append(targets, t) } return targets } // Stream computes quantiles for a stream of float64s. It is not thread-safe by // design. Take care when using across multiple goroutines. type Stream struct { *stream b Samples sorted bool } func newStream(ƒ invariant) *Stream { x := &stream{ƒ: ƒ} return &Stream{x, make(Samples, 0, 500), true} } // Insert inserts v into the stream. func (s *Stream) Insert(v float64) { s.insert(Sample{Value: v, Width: 1}) } func (s *Stream) insert(sample Sample) { s.b = append(s.b, sample) s.sorted = false if len(s.b) == cap(s.b) { s.flush() } } // Query returns the computed qth percentiles value. If s was created with // NewTargeted, and q is not in the set of quantiles provided a priori, Query // will return an unspecified result. func (s *Stream) Query(q float64) float64 { if !s.flushed() { // Fast path when there hasn't been enough data for a flush; // this also yields better accuracy for small sets of data. l := len(s.b) if l == 0 { return 0 } i := int(math.Ceil(float64(l) * q)) if i > 0 { i -= 1 } s.maybeSort() return s.b[i].Value } s.flush() return s.stream.query(q) } // Merge merges samples into the underlying streams samples. This is handy when // merging multiple streams from separate threads, database shards, etc. // // ATTENTION: This method is broken and does not yield correct results. The // underlying algorithm is not capable of merging streams correctly. func (s *Stream) Merge(samples Samples) { sort.Sort(samples) s.stream.merge(samples) } // Reset reinitializes and clears the list reusing the samples buffer memory. func (s *Stream) Reset() { s.stream.reset() s.b = s.b[:0] } // Samples returns stream samples held by s. func (s *Stream) Samples() Samples { if !s.flushed() { return s.b } s.flush() return s.stream.samples() } // Count returns the total number of samples observed in the stream // since initialization. func (s *Stream) Count() int { return len(s.b) + s.stream.count() } func (s *Stream) flush() { s.maybeSort() s.stream.merge(s.b) s.b = s.b[:0] } func (s *Stream) maybeSort() { if !s.sorted { s.sorted = true sort.Sort(s.b) } } func (s *Stream) flushed() bool { return len(s.stream.l) > 0 } type stream struct { n float64 l []Sample ƒ invariant } func (s *stream) reset() { s.l = s.l[:0] s.n = 0 } func (s *stream) insert(v float64) { s.merge(Samples{{v, 1, 0}}) } func (s *stream) merge(samples Samples) { // TODO(beorn7): This tries to merge not only individual samples, but // whole summaries. The paper doesn't mention merging summaries at // all. Unittests show that the merging is inaccurate. Find out how to // do merges properly. var r float64 i := 0 for _, sample := range samples { for ; i < len(s.l); i++ { c := s.l[i] if c.Value > sample.Value { // Insert at position i. s.l = append(s.l, Sample{}) copy(s.l[i+1:], s.l[i:]) s.l[i] = Sample{ sample.Value, sample.Width, math.Max(sample.Delta, math.Floor(s.ƒ(s, r))-1), // TODO(beorn7): How to calculate delta correctly? } i++ goto inserted } r += c.Width } s.l = append(s.l, Sample{sample.Value, sample.Width, 0}) i++ inserted: s.n += sample.Width r += sample.Width } s.compress() } func (s *stream) count() int { return int(s.n) } func (s *stream) query(q float64) float64 { t := math.Ceil(q * s.n) t += math.Ceil(s.ƒ(s, t) / 2) p := s.l[0] var r float64 for _, c := range s.l[1:] { r += p.Width if r+c.Width+c.Delta > t { return p.Value } p = c } return p.Value } func (s *stream) compress() { if len(s.l) < 2 { return } x := s.l[len(s.l)-1] xi := len(s.l) - 1 r := s.n - 1 - x.Width for i := len(s.l) - 2; i >= 0; i-- { c := s.l[i] if c.Width+x.Width+x.Delta <= s.ƒ(s, r) { x.Width += c.Width s.l[xi] = x // Remove element at i. copy(s.l[i:], s.l[i+1:]) s.l = s.l[:len(s.l)-1] xi -= 1 } else { x = c xi = i } r -= c.Width } } func (s *stream) samples() Samples { samples := make(Samples, len(s.l)) copy(samples, s.l) return samples }