AARP machine improvements

This commit is contained in:
Josh Deprez 2024-04-07 12:09:58 +10:00
parent 7c3e508dd1
commit 7cb0a31100
Signed by: josh
SSH key fingerprint: SHA256:zZji7w1Ilh2RuUpbQcqkLPrqmRwpiCSycbF2EfKm6Kw

150
aarp.go
View file

@ -21,52 +21,57 @@ const (
aarpRequestTimeout = 10 * time.Second
)
type aarpState int
const (
aarpStateProbing aarpState = iota
aarpStateAssigned
)
// AARPMachine maintains both an Address Mapping Table and handles AARP packets
// (sending and receiving requests, responses, and probes). This process assumes
// a particular network range rather than using the startup range, since this
// program is a seed router.
type AARPMachine struct {
*AMT
*addressMappingTable
cfg *config
pcapHandle *pcap.Handle
state aarpState
probes int
// The Run goroutine is responsible for all writes to myAddr.Proto and
// probes, so this mutex is not used to enforce a single writer, only
// consistent reads
mu sync.RWMutex
myAddr aarp.AddrPair
probes int
}
// NewAARPMachine creates a new AARPMachine.
func NewAARPMachine(cfg *config, pcapHandle *pcap.Handle, myHWAddr ethernet.Addr) *AARPMachine {
return &AARPMachine{
AMT: new(AMT),
cfg: cfg,
pcapHandle: pcapHandle,
addressMappingTable: new(addressMappingTable),
cfg: cfg,
pcapHandle: pcapHandle,
myAddr: aarp.AddrPair{
Hardware: myHWAddr,
},
}
}
// Address returns the address of this node, and reports if the address is valid
// (i.e. not tentative).
func (a *AARPMachine) Address() (aarp.AddrPair, bool) {
a.mu.RLock()
defer a.mu.RUnlock()
return a.myAddr, a.assigned()
}
// Run executes the machine.
func (a *AARPMachine) Run(ctx context.Context, incomingCh <-chan *ethertalk.Packet) error {
ticker := time.NewTicker(200 * time.Millisecond) // 200ms is the AARP probe retransmit
defer ticker.Stop()
a.state = aarpStateProbing
a.probes = 0
// Initialise our DDP address with a preferred address (first network.1)
a.mu.Lock()
a.probes = 0
a.myAddr.Proto = ddp.Addr{
Network: ddp.Network(a.cfg.EtherTalk.NetStart),
Node: 1,
}
a.mu.Unlock()
ticker := time.NewTicker(200 * time.Millisecond) // 200ms is the AARP probe retransmit
defer ticker.Stop()
for {
select {
@ -74,21 +79,18 @@ func (a *AARPMachine) Run(ctx context.Context, incomingCh <-chan *ethertalk.Pack
return ctx.Err()
case <-ticker.C:
switch a.state {
case aarpStateAssigned:
if a.assigned() {
// No need to keep the ticker running if assigned
ticker.Stop()
continue
}
case aarpStateProbing:
if a.probes >= 10 {
a.state = aarpStateAssigned
continue
}
a.probes++
if err := a.probe(); err != nil {
log.Printf("Couldn't broadcast a Probe: %v", err)
continue
}
a.mu.Lock()
a.probes++
a.mu.Unlock()
if err := a.probe(); err != nil {
log.Printf("Couldn't broadcast a Probe: %v", err)
}
case ethFrame, ok := <-incomingCh:
@ -106,15 +108,13 @@ func (a *AARPMachine) Run(ctx context.Context, incomingCh <-chan *ethertalk.Pack
case aarp.RequestOp:
log.Printf("AARP: Who has %v? Tell %v", aapkt.Dst.Proto, aapkt.Src.Proto)
// Glean that aapkt.Src.Proto -> aapkt.Src.Hardware
a.AMT.Learn(aapkt.Src.Proto, aapkt.Src.Hardware)
a.addressMappingTable.Learn(aapkt.Src.Proto, aapkt.Src.Hardware)
log.Printf("AARP: Gleaned that %v -> %v", aapkt.Src.Proto, aapkt.Src.Hardware)
if aapkt.Dst.Proto != a.myAddr.Proto {
continue
}
if a.state != aarpStateAssigned {
if !(aapkt.Dst.Proto == a.myAddr.Proto && a.assigned()) {
continue
}
// Hey that's me! Let them know!
if err := a.heyThatsMe(aapkt.Src); err != nil {
log.Printf("AARP: Couldn't respond to Request: %v", err)
@ -123,12 +123,12 @@ func (a *AARPMachine) Run(ctx context.Context, incomingCh <-chan *ethertalk.Pack
case aarp.ResponseOp:
log.Printf("AARP: %v is at %v", aapkt.Dst.Proto, aapkt.Dst.Hardware)
a.AMT.Learn(aapkt.Dst.Proto, aapkt.Dst.Hardware)
a.addressMappingTable.Learn(aapkt.Dst.Proto, aapkt.Dst.Hardware)
if aapkt.Dst.Proto != a.myAddr.Proto {
continue
}
if a.state == aarpStateProbing {
if !a.assigned() {
a.reroll()
}
@ -139,19 +139,17 @@ func (a *AARPMachine) Run(ctx context.Context, incomingCh <-chan *ethertalk.Pack
if aapkt.Dst.Proto != a.myAddr.Proto {
continue
}
switch a.state {
case aarpStateProbing:
if !a.assigned() {
// Another node is probing for the same address! Unlucky
a.reroll()
continue
}
case aarpStateAssigned:
if err := a.heyThatsMe(aapkt.Src); err != nil {
log.Printf("AARP: Couldn't respond to Probe: %v", err)
continue
}
if err := a.heyThatsMe(aapkt.Src); err != nil {
log.Printf("AARP: Couldn't respond to Probe: %v", err)
continue
}
}
}
}
}
@ -160,9 +158,8 @@ func (a *AARPMachine) Run(ctx context.Context, incomingCh <-chan *ethertalk.Pack
// If the address is in the cache (AMT) and is still valid, that is used.
// Otherwise, the address is resolved using AARP.
func (a *AARPMachine) Resolve(ctx context.Context, ddpAddr ddp.Addr) (ethernet.Addr, error) {
// try the cache first
result, ok := a.AMT.Lookup(ddpAddr)
if ok {
result, waitCh := a.addressMappingTable.lookupOrWait(ddpAddr)
if waitCh == nil {
return result, nil
}
@ -177,18 +174,15 @@ func (a *AARPMachine) Resolve(ctx context.Context, ddpAddr ddp.Addr) (ethernet.A
defer cancel()
for {
// We might have a result already
result, ok := a.AMT.Lookup(ddpAddr)
if ok {
return result, nil
}
select {
case <-ctx.Done():
return ethernet.Addr{}, ctx.Err()
case <-a.AMT.Wait(ddpAddr):
// Should have a result now.
case <-waitCh:
result, waitCh = a.addressMappingTable.lookupOrWait(ddpAddr)
if waitCh == nil {
return result, nil
}
case <-ticker.C:
if err := a.request(ddpAddr); err != nil {
@ -198,11 +192,15 @@ func (a *AARPMachine) Resolve(ctx context.Context, ddpAddr ddp.Addr) (ethernet.A
}
}
func (a *AARPMachine) assigned() bool { return a.probes >= 10 }
// Re-roll a local address
func (a *AARPMachine) reroll() {
a.mu.Lock()
defer a.mu.Unlock()
if a.cfg.EtherTalk.NetStart != a.cfg.EtherTalk.NetEnd {
// Pick a new network number at random
a.myAddr.Proto.Network = rand.N[ddp.Network](
a.myAddr.Proto.Network = rand.N(
a.cfg.EtherTalk.NetEnd-a.cfg.EtherTalk.NetStart+1,
) + a.cfg.EtherTalk.NetStart
}
@ -245,7 +243,7 @@ func (a *AARPMachine) probe() error {
}
// Broadcast an AARP Request
func (a AARPMachine) request(ddpAddr ddp.Addr) error {
func (a *AARPMachine) request(ddpAddr ddp.Addr) error {
reqFrame, err := ethertalk.AARP(a.myAddr.Hardware, aarp.Request(a.myAddr, ddpAddr))
if err != nil {
return err
@ -263,15 +261,15 @@ type amtEntry struct {
updated chan struct{}
}
// AMT implements a concurrent-safe Address Mapping Table for AppleTalk (DDP)
// addresses to Ethernet hardware addresses.
type AMT struct {
mu sync.RWMutex
// addressMappingTable implements a concurrent-safe Address Mapping Table for
// AppleTalk (DDP) addresses to Ethernet hardware addresses.
type addressMappingTable struct {
mu sync.Mutex
table map[ddp.Addr]*amtEntry
}
// Learn adds or updates an AMT entry.
func (t *AMT) Learn(ddpAddr ddp.Addr, hwAddr ethernet.Addr) {
func (t *addressMappingTable) Learn(ddpAddr ddp.Addr, hwAddr ethernet.Addr) {
t.mu.Lock()
defer t.mu.Unlock()
if t.table == nil {
@ -297,29 +295,21 @@ func (t *AMT) Learn(ddpAddr ddp.Addr, hwAddr ethernet.Addr) {
oldEnt.updated = make(chan struct{})
}
// Wait returns a channel that is closed when the entry for ddpAddr is updated.
func (t *AMT) Wait(ddpAddr ddp.Addr) <-chan struct{} {
// lookupOrWait returns either the valid cached Ethernet address for the given
// DDP address, or a channel that is closed when the entry is updated.
func (t *addressMappingTable) lookupOrWait(ddpAddr ddp.Addr) (ethernet.Addr, <-chan struct{}) {
t.mu.Lock()
defer t.mu.Unlock()
if t.table == nil {
t.table = make(map[ddp.Addr]*amtEntry)
}
oldEnt := t.table[ddpAddr]
if oldEnt != nil {
return oldEnt.updated
ent, ok := t.table[ddpAddr]
if ok && time.Since(ent.last) < maxAMTEntryAge {
return ent.hwAddr, nil
}
ch := make(chan struct{})
t.table[ddpAddr] = &amtEntry{
updated: ch,
}
return ch
}
// Lookup searches for a non-expired entry in the table only. It does not send
// any packets.
func (t *AMT) Lookup(ddpAddr ddp.Addr) (ethernet.Addr, bool) {
t.mu.RLock()
defer t.mu.RUnlock()
ent, ok := t.table[ddpAddr]
return ent.hwAddr, ok && time.Since(ent.last) < maxAMTEntryAge
return ethernet.Addr{}, ch
}